首先计算文档关键词词频矩阵,然后对关键词词频矩阵用TF-IDF算法加权,将加权后的矩阵作为词云图的输入,python代码怎么写,
时间: 2023-04-01 09:02:07 浏览: 112
TF-IDF算法解析与Python实现方法详解
以下是一个简单的 Python 代码示例,用于计算文档关键词词频矩阵并使用 TF-IDF 算法加权:
```python
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
# 读取文本文件
with open('document.txt', 'r', encoding='utf-8') as f:
text = f.read()
# 计算关键词词频矩阵
vectorizer = TfidfVectorizer()
tfidf = vectorizer.fit_transform([text])
df = pd.DataFrame(tfidf[].T.todense(), index=vectorizer.get_feature_names(), columns=["tfidf"])
df = df.sort_values('tfidf', ascending=False)
# 输出前 10 个关键词及其 TF-IDF 值
print(df.head(10))
```
请注意,此代码仅适用于单个文档。如果您有多个文档,请使用 `TfidfVectorizer` 的 `fit_transform` 方法来计算所有文档的 TF-IDF 加权矩阵。
阅读全文