#include<iostream> #include<string> using namespace std; void f(int a) { string x[11] = { "0","1","2","3","4","5","6","7","8","9","A" }; int b; b = a % 11; a = a / 11; if (a != 0) f(a); cout << x[b]; return; } int main() { int n; cin >> n; whi
时间: 2023-07-21 18:58:12 浏览: 57
le (n != 0) { f(n); cout << endl; cin >> n; } return 0; }
这是一段 C++ 代码,它的功能是将输入的十进制数转换为十一进制数并输出。其中使用了递归函数 f(),它每次取出输入数除以 11 的余数,然后将输入数除以 11 并传入自己,直到输入数为 0 时结束递归。最后输出每次取出的余数,即为十一进制数。
相关问题
在不使用任何STL容器的前提下实现这个代码#include <iostream> #include <memory> #include <stack> #include <fstream> #include <vector> #include <cmath> #include <iomanip> #include <exception> #include <climits> #include <array> #include <cstdint> #include <string> using namespace std; class T { public: virtual bool isOperator() = 0; virtual ~T() {} };
可以使用裸指针和自定义容器实现这段代码。
首先,我们需要定义一个自定义容器来存储T类型的指针。这个容器可以使用动态数组实现,需要自己管理内存。下面是一个简单的实现:
```c++
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
接下来,我们需要定义一个栈,用来存储T类型的指针。这个栈可以使用动态数组实现,也需要自己管理内存。栈的基本操作包括push、pop、top等,可以按照以下方式实现:
```c++
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
最后,我们可以定义一个派生自T的类,来实现isOperator()函数。这个函数在子类中可以根据实际需求来具体实现。
```c++
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
```
这样,就可以在不使用STL容器的前提下实现这个代码了。完整代码如下:
```c++
#include <iostream>
using namespace std;
class T {
public:
virtual bool isOperator() = 0;
virtual ~T() {}
};
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
int main() {
MyVector vec;
vec.push_back(new MyT());
vec.clear();
MyStack stk;
stk.push(new MyT());
stk.clear();
return 0;
}
```
#include <iostream> #include <vector> #include <string> #include <algorithm> #include <map> #include <thread> #include "List.h" #include "Node.h" using namespace std; int main(void) { auto* head = new Node<int>(10); //auto *list = new List<int>(head); List<int> list(head); //list->Display(); return 0; }
这段代码包含了 List 类和 Node 类的头文件,并且定义了一个 main 函数。在 main 函数中,它首先创建了一个 Node 对象 head,数据值为 10。然后,它使用 head 对象创建了一个 List 对象 list。最后,它调用了 List 类的成员函数 Display 输出链表中的元素。
需要注意的是,由于 List 类已经包含了头节点指针 _head 和链表长度 _size,因此没有必要再使用指针变量 list 来引用 List 对象。因此,可以直接使用 List<int> list(head) 来创建对象。另外,注释掉的 list->Display() 可以直接通过 list.Display() 来调用,因为 Display 函数是一个公有成员函数。
阅读全文