clear all close all pathnameL='C:\Users\ACER\Desktop\xiangxianyu\闲鱼\1\双目数据\2018-1-17\fx\L'; filename=strcat(num2str(1),'.bmp'); L=imread([pathnameL filename]); pathnameR='C:\Users\ACER\Desktop\xiangxianyu\闲鱼\1\双目数据\2018-1-17\fx\R'; filename=strcat(num2str(1),'.bmp'); R=imread([pathnameR filename]); [L_r,R_r]=rectify(L,R); L_r=double(L_r); R_r=double(R_r); M=7; %%空间相关窗口半径大小 [m n]=size(L_r); ix1=300; ix2=800; jy1=410; jy2=780; yuzhi=0.6; disparity=zeros(m,n); % %% 原始双目匹配搜寻代码 % tic % for i1=ix1:ix2 % for j1=jy1:jy2 % corr = zeros(m,n); % H1=L_r(i1-M:i1+M,j1-M:j1+M); % for j=j1-20:j1+20 % H2=R_r(i1-M:i1+M,j-M:j+M); % corr(i1,j)=corr2(H1,H2); % end % % rmax=max(max(corr)); % if(rmax<yuzhi) % disparity(i1,j1)=NaN; % else % [m1 n1]=find(corr==rmax); % ymax=n1; % %%三点曲线拟合 % f_1=corr(i1,ymax-1); % f0=corr(i1,ymax); % f1=corr(i1,ymax+1); % ymax_fit=n1+0.5*(f_1-f1)/(f_1-2*f0+f1); % disparity(i1,j1)=j1-ymax_fit; % end
时间: 2024-03-29 16:36:12 浏览: 101
闲鱼-1.zip
这段代码主要实现了双目视觉图像处理中的匹配搜索以及视差计算。具体实现包括以下步骤:
1. 读取左右两个图像的数据,使用imread函数读取图像数据。
2. 进行校正操作,使用rectify函数对左右图像进行校正,使得它们的对应像素在同一水平线上。
3. 定义空间相关窗口的半径大小,以及搜索区域的范围。
4. 针对每个像素点,在搜索区域内寻找与其匹配的像素点。
5. 根据匹配结果计算视差值,得到左右两个图像之间的深度差异信息。
需要注意的是,该代码并未对搜索范围进行优化,因此可能存在一定的计算误差。同时,视差计算的精度也受到空间相关窗口大小的影响。如果需要更高的精度和效率,可以通过调整搜索区域、优化匹配算法等方式进行改进。
阅读全文