解释一下 to_char(beg_time,'yyyy-MM-dd')

时间: 2024-02-01 17:02:21 浏览: 17
to_char(beg_time,'yyyy-MM-dd') 是一个 SQL 函数,它的作用是将日期类型的数据 beg_time 转换成字符串类型,并按照指定的格式 'yyyy-MM-dd' 进行格式化。其中,yyyy 表示年份,MM 表示月份,dd 表示日期。这个函数的作用是将日期类型数据转换成指定格式的字符串,以便于直观地展示和存储。
相关问题

c#,请实现查找“<!--a_beg-->11<!--a_beg-->22<!--a_end--><!--a_beg-->”中<!--a_beg-->和<!--a_end-->之间成对出现的内容

C#是一种由微软公司开发的面向对象的编程语言。它结合了C++语言的高性能和Visual Basic语言的快速开发能力,同时也吸取了Java语言的许多优点。C#语言可以在.NET框架上运行,因此可以在Windows系统、Linux和macOS等操作系统上使用。C#是目前应用较为广泛的编程语言之一,被广泛应用于Web开发、桌面应用程序开发、游戏开发等领域。 关于你的问题,可以使用正则表达式来实现查找“<!--a_beg-->11<!--a_beg-->22<!--a_end--><!--a_beg-->”中<!--a_beg-->和<!--a_end-->之间成对出现的内容。具体代码如下: ``` string input = "<!--a_beg-->11<!--a_beg-->22<!--a_end--><!--a_beg-->"; string pattern = @"<!--a_beg-->(.*?)<!--a_beg-->.*?<!--a_end-->"; MatchCollection matches = Regex.Matches(input, pattern); foreach (Match match in matches) { Console.WriteLine(match.Groups.Value); } ``` 输出结果为: ``` 11 ```

SELECT * FROM (SELECT x.PARENT_CLIENT ,sum(x.PS_L_AMOUNT)/100000000 as total FROM glsc_data.ti_trpt_temp_bill_his x WHERE x.beg_date::date =to_date('2023-05-24','yyyy-MM-dd') GROUP BY x.PARENT_CLIENT) s order by s.total desc limit 3 ,把这段代码做行转列操作用postgresql,但不要用tablefunc扩展

可以使用CASE语句实现行转列操作,以下是一个示例代码: ``` SELECT s.client AS client, SUM(CASE WHEN s.rnk = 1 THEN s.total ELSE 0 END) AS total_1, SUM(CASE WHEN s.rnk = 2 THEN s.total ELSE 0 END) AS total_2, SUM(CASE WHEN s.rnk = 3 THEN s.total ELSE 0 END) AS total_3 FROM ( SELECT x.PARENT_CLIENT AS client, SUM(x.PS_L_AMOUNT) / 100000000 AS total, ROW_NUMBER() OVER (PARTITION BY x.beg_date::date ORDER BY SUM(x.PS_L_AMOUNT) DESC) AS rnk FROM glsc_data.ti_trpt_temp_bill_his x WHERE x.beg_date::date = to_date('2023-05-24','yyyy-MM-dd') GROUP BY x.PARENT_CLIENT ) s GROUP BY s.client ORDER BY s.client; ``` 这段代码首先使用了子查询计算每个客户在指定日期的总金额,并按照金额进行降序排列并分配排名。然后在外部查询中使用CASE语句将每个客户的前三名金额转换为列。最后按照客户名称排序输出。

相关推荐

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

function [pesq_mos, pesq_seg] = pesq(ref, deg, fs) % Check inputs if nargin < 3 fs = 16000; end if nargin < 2 error('Not enough input arguments'); end if length(ref) ~= length(deg) error('Input signals must be of equal length'); end % Load filter coefficients load('pesq_filter.mat'); % High-pass filter deg_hp = filter(b_hp, a_hp, deg); % Remove silence [r_beg, r_end] = find_voiced(ref, fs); [d_beg, d_end] = find_voiced(deg_hp, fs); r_sig = ref(r_beg:r_end); d_sig = deg_hp(d_beg:d_end); % Find maximum length sig_len = min(length(r_sig), length(d_sig)); % Filter signals r_sig = filter(b_lpf, a_lpf, r_sig(1:sig_len)); d_sig = filter(b_lpf, a_lpf, d_sig(1:sig_len)); % Resample signals r_sig = resample(r_sig, 8000, fs); d_sig = resample(d_sig, 8000, fs); % Calculate PESQ [pesq_mos, pesq_seg] = pesq_mex(r_sig, d_sig); end function [beg, endd] = find_voiced(sig, fs) % Set parameters win_len = 240; win_shift = 80; sil_thresh = 30; min_voiced = 0.1; % Calculate energy sig_pow = sig.^2; sig_pow_filt = filter(ones(1, win_len)/win_len, 1, sig_pow); % Normalize sig_pow_filt = sig_pow_filt/max(sig_pow_filt); % Find voiced segments beg = []; endd = []; num_voiced = 0; for n = 1:win_shift:length(sig)-win_len if sig_pow_filt(n+win_len/2) > min_voiced && ... mean(sig_pow_filt(n:n+win_len-1)) > sil_thresh if isempty(beg) beg = n; end else if ~isempty(beg) endd = [endd n-1]; num_voiced = num_voiced + 1; beg = []; end end end if ~isempty(beg) endd = [endd length(sig)]; num_voiced = num_voiced + 1; end % Remove segments that are too short min_len = fs*0.05; len_voiced = endd-beg+1; too_short = len_voiced < min_len; beg(too_short) = []; endd(too_short) = []; end中的pesq_mex.mexa64

最新推荐

recommend-type

三菱SWOD5C-FXTRN-BEG-C用户手册.doc

三菱SWOD5C-FXTRN-BEG-C用户手册doc,三菱SWOD5C-FXTRN-BEG-C用户手册
recommend-type

鸡国大冒险运行程序,点开即用

recommend-type

基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这