Select reqno,Beg_time,Ops_id,type+asa+time nnis from (select reqno,Beg_time,Ops_id, case when Cut_type like '%Ⅰ%' or Cut_type like '%Ⅱ%' then 0 when Cut_type like '%Ⅲ%' or Cut_type like '%Ⅳ%' then 1 end as [type],  case when ASA_grade like '%Ⅰ%' or ASA_grade like '%Ⅱ%' then 0 when ASA_grade like '%Ⅲ%' or ASA_grade like '%Ⅳ%' or ASA_grade like '%Ⅴ%'then 1 end as [asa],  case when OPs_time <='180' then 0 when OPs_time >'180' then 1 end as [time]  from PatOPSCUTINFOR where Beg_time >=GETDATE()-35) ops;

时间: 2024-04-22 11:24:17 浏览: 113
你的 SQL 查询语句看起来基本上是正确的,但是存在一些不必要的换行和空格导致语法错误。以下是修正后的查询语句: ```sql SELECT reqno, Beg_time, Ops_id, type + asa + time AS nnis FROM ( SELECT reqno, Beg_time, Ops_id, CASE WHEN Cut_type LIKE '%Ⅰ%' OR Cut_type LIKE '%Ⅱ%' THEN 0 WHEN Cut_type LIKE '%Ⅲ%' OR Cut_type LIKE '%Ⅳ%' THEN 1 END AS [type], CASE WHEN ASA_grade LIKE '%Ⅰ%' OR ASA_grade LIKE '%Ⅱ%' THEN 0 WHEN ASA_grade LIKE '%Ⅲ%' OR ASA_grade LIKE '%Ⅳ%' OR ASA_grade LIKE '%Ⅴ%' THEN 1 END AS [asa], CASE WHEN OPs_time <= '180' THEN 0 WHEN OPs_time > '180' THEN 1 END AS [time] FROM PatOPSCUTINFOR WHERE Beg_time >= GETDATE() - 35 ) ops; ``` 注意,修正后的查询语句移除了多余的换行和空格,以及无效的注释符号。确保查询语句在执行前进行了验证,并根据需要调整列名、条件和数据类型等部分。
阅读全文

相关推荐

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

function [pesq_mos, pesq_seg] = pesq(ref, deg, fs) % Check inputs if nargin < 3 fs = 16000; end if nargin < 2 error('Not enough input arguments'); end if length(ref) ~= length(deg) error('Input signals must be of equal length'); end % Load filter coefficients load('pesq_filter.mat'); % High-pass filter deg_hp = filter(b_hp, a_hp, deg); % Remove silence [r_beg, r_end] = find_voiced(ref, fs); [d_beg, d_end] = find_voiced(deg_hp, fs); r_sig = ref(r_beg:r_end); d_sig = deg_hp(d_beg:d_end); % Find maximum length sig_len = min(length(r_sig), length(d_sig)); % Filter signals r_sig = filter(b_lpf, a_lpf, r_sig(1:sig_len)); d_sig = filter(b_lpf, a_lpf, d_sig(1:sig_len)); % Resample signals r_sig = resample(r_sig, 8000, fs); d_sig = resample(d_sig, 8000, fs); % Calculate PESQ [pesq_mos, pesq_seg] = pesq_mex(r_sig, d_sig); end function [beg, endd] = find_voiced(sig, fs) % Set parameters win_len = 240; win_shift = 80; sil_thresh = 30; min_voiced = 0.1; % Calculate energy sig_pow = sig.^2; sig_pow_filt = filter(ones(1, win_len)/win_len, 1, sig_pow); % Normalize sig_pow_filt = sig_pow_filt/max(sig_pow_filt); % Find voiced segments beg = []; endd = []; num_voiced = 0; for n = 1:win_shift:length(sig)-win_len if sig_pow_filt(n+win_len/2) > min_voiced && ... mean(sig_pow_filt(n:n+win_len-1)) > sil_thresh if isempty(beg) beg = n; end else if ~isempty(beg) endd = [endd n-1]; num_voiced = num_voiced + 1; beg = []; end end end if ~isempty(beg) endd = [endd length(sig)]; num_voiced = num_voiced + 1; end % Remove segments that are too short min_len = fs*0.05; len_voiced = endd-beg+1; too_short = len_voiced < min_len; beg(too_short) = []; endd(too_short) = []; end中的pesq_mex.mexa64

最新推荐

recommend-type

三菱SWOD5C-FXTRN-BEG-C用户手册.doc

"三菱SWOD5C-FXTRN-BEG-C用户手册" 根据提供的文件信息,我们可以总结出以下知识点: 1. PLC编程概述:PLC编程是指使用可编程逻辑控制器(Programmable Logic Controller)来控制和监控工业设备的过程。PLC编程...
recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

基于node.js完成登录

基于node.js完成登录
recommend-type

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab
recommend-type

(2368806)CCNA中文版PPT

**CCNA(思科认证网络助理工程师)是网络技术领域中的一个基础认证,它涵盖了网络基础知识、IP编址、路由与交换技术等多个方面。以下是对CCNA中文版PPT中可能涉及的知识点的详细说明:** ### 第1章 高级IP编址 #### 1.1 IPv4地址结构 - IPv4地址由32位二进制组成,通常分为四段,每段8位,用点分十进制表示。 - 子网掩码用于定义网络部分和主机部分,如255.255.255.0。 - IP地址的分类:A类、B类、C类、D类(多播)和E类(保留)。 #### 1.2 子网划分 - 子网划分用于优化IP地址的分配,通过借用主机位创建更多的子网。 - 子网计算涉及掩码位数选择,以及如何确定可用的主机数和子网数。 - CIDR(无类别域间路由)表示法用于更有效地管理IP地址空间。 #### 1.3 私有IP地址 - 为了节省公网IP地址,私有IP地址被用于内部网络,如10.0.0.0/8,172.16.0.0/12,192.168.0.0/16。 #### 1.4 广播地址 - 每个网络都有一个特定的广播地址,所有数据包都会发送到这个地址以达到同一网络内的所有设备。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"