for j in range(3,40): set_k = j data_x = data.iloc[set_k:-1, 1:] # 滞后一天的股票数据 data_x.index = range(data_x.shape[0]) # 重置索引 new_columns = ['volume_1', 'open_1', 'high_1', 'low_1', 'close_1', 'chg_1', 'percent_1', 'turnoverrate_1','amount_1','sentiment_score_avg_1'] data_x.columns = new_columns # 重置列名 for i in range(2, set_k): data_x_i = data.iloc[set_k + 1 - i:-i, 1:] data_x_i.index = range(data_x_i.shape[0]) # 重置索引 new_columns = ['volume_{}'.format(i), 'open_{}'.format(i), 'high_{}'.format(i), 'low_{}'.format(i), 'close_{}'.format(i), 'chg_{}'.format(i), 'percent_{}'.format(i), 'turnoverrate_{}'.format(i), 'amount_{}'.format(i), 'sentiment_score_avg_{}'.format(i)] data_x_i.columns = new_columns data_x = pd.concat([data_x, data_x_i], axis=1)
时间: 2024-03-07 18:51:18 浏览: 58
这段代码是一个数据处理的代码段,主要用于将原始数据转化为适合进行机器学习模型训练的格式。具体来说,代码使用两个for循环实现了以下操作:
1. 对于每个j值(从3到39),代码将原始数据data中的第j+1行到倒数第二行作为特征数据,存储在名为data_x的数据框中。其中,data_x的第一列为标签数据,即第j行的收盘价与第j+1行的收盘价的差值,用于表示股票价格的涨跌情况。
2. 对于每个i值(从2到j-1),代码使用iloc函数获取原始数据中的第set_k+1-i行到第set_k-i行数据,将其存储在名为data_x_i的数据框中,并将data_x_i的列名重新设置为'volume_i', 'open_i', 'high_i', 'low_i', 'close_i', 'chg_i', 'percent_i', 'turnoverrate_i', 'amount_i', 'sentiment_score_avg_i'等格式。然后,代码使用concat函数将data_x_i和data_x按列方向合并,并将结果存储在名为data_x的数据框中。
通过这些操作,代码将原始数据转化为了适合进行机器学习模型训练的格式,其中每个样本的特征数据包括当天及前面j-1天的股票数据,用于预测当天股票价格的涨跌情况。
相关问题
def data_processing(data): # 日期缺失,补充 data.fillna(method='ffill', inplace=True) date_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] # 缺失值处理 history_time_list = [] for date in date_history: date_obj = datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') #将字符串转为 datetime 对象 history_time_list.append(date_obj) start_time = history_time_list[0] # 起始时间 end_time = history_time_list[-1] # 结束时间 delta = datetime.timedelta(minutes=15) #时间间隔为15分钟 time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta # 缺失位置记录 code_list = [] for i in range(len(time_new_list)): code_list = code_list history_time_list = history_time_list while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): history_time_list.insert(i, time_new_list[i]) code_list.append(i) for i in code_list: data_history.insert(i, data_history[i - 1]) # 输出补充好之后的数据 data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data 代码 优化
这段代码可以进行以下优化:
1. 将日期转换为 datetime 对象的操作可以放在读取数据时进行,避免在处理数据时重复执行。
2. 用 pandas 的 resample 函数可以方便地实现时间序列的重采样。可以先将日期列设置为索引,然后使用 resample 函数按照指定的时间间隔进行重采样,再使用 ffill 方法填充缺失值。
3. 可以使用 pandas 的 merge 函数将重采样之后的数据与原数据进行合并,这样可以避免使用循环操作。
下面是优化后的代码:
```
import pandas as pd
import datetime
def data_processing(data):
# 将日期转换为 datetime 对象
data['date'] = pd.to_datetime(data['date'], format='%Y/%m/%d %H:%M')
data.set_index('date', inplace=True)
# 重采样,补全缺失值
data_resampled = data.resample('15T').ffill()
# 合并原数据和重采样之后的数据
data_processed = data_resampled.merge(data, how='outer', left_index=True, right_index=True)
return data_processed
```
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
阅读全文