kmeans聚类算法 matlab代码
时间: 2023-08-30 13:05:08 浏览: 202
以下是一个简单的kmeans聚类算法的matlab代码示例:
```matlab
% 生成100个二维随机数据点
data = rand(100,2);
% 设置聚类个数为3
k = 3;
% 随机初始化聚类中心
centroids = data(randperm(size(data,1),k),:);
% 最大迭代次数
max_iter = 100;
% 初始化变量
iter = 0;
old_centroids = zeros(size(centroids));
while ~isequal(centroids, old_centroids) && iter < max_iter
% 保存上一次迭代的聚类中心
old_centroids = centroids;
% 计算每个数据点到聚类中心的距离
dists = pdist2(data, centroids);
% 将每个数据点分配到距离最近的聚类中心
[~, idx] = min(dists, [], 2);
% 更新聚类中心为每个聚类的平均值
for i = 1:k
centroids(i,:) = mean(data(idx == i,:), 1);
end
% 迭代次数加1
iter = iter + 1;
end
% 将数据点按照聚类分配结果绘制散点图
figure;
scatter(data(idx==1,1), data(idx==1,2), 'r');
hold on;
scatter(data(idx==2,1), data(idx==2,2), 'g');
scatter(data(idx==3,1), data(idx==3,2), 'b');
scatter(centroids(:,1), centroids(:,2), 'k', 'filled');
legend('Cluster 1', 'Cluster 2', 'Cluster 3', 'Centroids');
```
这段代码首先生成了100个二维随机数据点,然后使用kmeans聚类算法将它们分成了3个簇。最后将数据点按照聚类结果绘制了散点图,并用黑色实心圆表示每个聚类的中心。
阅读全文