gru进行时间序列预测pytorch代码
时间: 2023-05-19 13:05:46 浏览: 163
以下是一个使用 PyTorch 实现 Gated Recurrent Unit (GRU) 进行时间序列预测的代码示例:
```python
import torch
import torch.nn as nn
class GRU(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(GRU, self).__init__()
self.hidden_size = hidden_size
self.gru = nn.GRU(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
output, hidden = self.gru(input, hidden)
output = self.fc(output)
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size)
input_size = 1
hidden_size = 16
output_size = 1
seq_len = 10
model = GRU(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for i in range(1000):
seq = torch.randn(seq_len, input_size)
target = torch.randn(seq_len, output_size)
hidden = model.init_hidden()
optimizer.zero_grad()
loss = 0
for j in range(seq_len):
output, hidden = model(seq[j].unsqueeze(0), hidden)
loss += criterion(output, target[j])
loss.backward()
optimizer.step()
if i % 100 == 0:
print('Epoch: {}, Loss: {:.4f}'.format(i, loss.item()))
```
这段代码实现了一个 GRU 模型,用于预测长度为 10 的时间序列。模型的输入维度为 1,输出维度为 1,隐藏层维度为 16。训练过程中使用均方误差损失函数和 Adam 优化器。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)