用MATLAB在多目标遗传算法中如何计算适应度,并进行非支配解排序 , 拥挤度赋值,并选择出优秀个体种群 P的代码
时间: 2024-03-14 18:43:03 浏览: 99
首先,多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA)的适应度计算方式与单目标遗传算法有所不同,需要考虑到多个目标函数。常见的计算适应度的方式有以下两种:
1. Pareto排序法
Pareto排序法是通过比较不同个体之间的支配关系来确定其适应度。根据Pareto最优解的定义,一个个体比另一个个体更优,当且仅当,它在至少一个目标函数上优于该个体,而在其他目标函数上至少不劣于该个体。我们可以通过计算每个个体被其他个体支配的次数来确定其适应度。
2. 距离度量法
距离度量法是通过计算个体之间的距离来确定其适应度,距离越小适应度越高。在距离计算中,需要考虑到种群的分布情况,以避免过度集中或者过度分散。
以下是基于Pareto排序法的多目标遗传算法的MATLAB代码示例:
```matlab
function [ParetoIndex, ParetoSet] = MOGA(fitnessFunction, popSize, genNum)
% 多目标遗传算法的实现
% fitnessFunction:适应度函数
% popSize:种群大小
% genNum:迭代次数
% 初始化种群
pop = rand(popSize, 2);
% 迭代
for i = 1 : genNum
% 计算适应度
fitness = zeros(popSize, 1);
for j = 1 : popSize
fitness(j) = fitnessFunction(pop(j, :));
end
% Pareto排序
ParetoIndex = ParetoRanking(fitness);
% 非支配解排序
[ParetoIndex, ParetoSet] = NonDominatedSorting(pop, ParetoIndex);
% 拥挤度赋值
crowdingDistance = CrowdingDistance(pop(ParetoIndex, :), fitness(ParetoIndex));
% 选择优秀个体
pop = Select(pop(ParetoIndex, :), crowdingDistance, popSize);
end
end
function ParetoIndex = ParetoRanking(fitness)
% Pareto排序法
n = length(fitness);
dominatedCount = zeros(n, 1);
dominatedSet = cell(n, 1);
for i = 1 : n
for j = 1 : n
if i == j
continue;
end
if all(fitness(i, :) <= fitness(j, :)) && any(fitness(i, :) < fitness(j, :))
dominatedCount(j) = dominatedCount(j) + 1;
dominatedSet{j} = [dominatedSet{j}, i];
end
end
end
ParetoIndex = find(dominatedCount == 0);
end
function [ParetoIndex, ParetoSet] = NonDominatedSorting(pop, ParetoIndex)
% 非支配解排序
ParetoSet = cell(length(ParetoIndex), 1);
for i = 1 : length(ParetoIndex)
isDominated = false;
for j = 1 : length(ParetoIndex)
if i == j
continue;
end
if all(pop(ParetoIndex(i), :) <= pop(ParetoIndex(j), :)) && any(pop(ParetoIndex(i), :) < pop(ParetoIndex(j), :))
isDominated = true;
break;
end
end
if ~isDominated
ParetoSet{i} = ParetoIndex(i);
end
end
ParetoSet = ParetoSet(~cellfun('isempty', ParetoSet));
ParetoIndex = cell2mat(ParetoSet);
end
function crowdingDistance = CrowdingDistance(pop, fitness)
% 拥挤度赋值
m = size(pop, 2);
n = size(pop, 1);
crowdingDistance = zeros(n, 1);
for i = 1 : m
[~, index] = sort(pop(:, i));
crowdingDistance(index(1)) = inf;
crowdingDistance(index(end)) = inf;
for j = 2 : n - 1
crowdingDistance(index(j)) = crowdingDistance(index(j)) + (pop(index(j+1), i) - pop(index(j-1), i)) / (max(pop(:, i)) - min(pop(:, i)));
end
end
end
function selectedPop = Select(pop, crowdingDistance, popSize)
% 选择优秀个体
n = size(pop, 1);
selectedPop = zeros(popSize, size(pop, 2));
[~, index] = sort(crowdingDistance, 'descend');
for i = 1 : popSize
selectedPop(i, :) = pop(index(i), :);
end
end
```
在上述代码中,fitnessFunction是多目标函数,popSize是种群大小,genNum是迭代次数。其中,ParetoRanking函数计算Pareto排序,NonDominatedSorting函数对非支配解进行排序,CrowdingDistance函数计算拥挤度赋值,Select函数进行优秀个体的选择。
需要注意的是,上述代码中的适应度计算方式是基于Pareto排序法的,如果采用距离度量法,则需要对CrowdingDistance函数进行修改。
阅读全文