Piecewise exponential model set.seed(1) uniq <- with(Data, sort(unique(Time[Death==1]))) a <- c(0, uniq[-length(uniq)] + diff(uniq)/2, max(Data$Time)+1) # Cut points jagsData <- with(Data, list( n = nrow(Data), # Number of subjects J = length(uniq), # Num of gaps between failure times K = length(uniq), # Num of lambda values to estimate t = Time, # Time on study d = Death, # 1 if event (death) observed Z = Group - 1.5, # Group (+0.5 / -0.5) a = a, # Cut points period = 1:length(uniq))) # Maps lambdas to intervals fit <- jags.model('piecewise.jag', data=jagsData, n.chains=4, n.adapt=1000) post <- jags.samples(fit, c('beta', 'lam'), 10000) post1 <- post在给定代码中,fit里的piecewise.jags具体是什么?这里应该有一个model的function。给定数据集包括变量Group,将40个对象分为两组,其中包括生存时间和是否死亡的状态。beta服从均值为零的正态分布,lambda服从gamma分布,我想你直接给出model具体是什么,用R code回答
时间: 2023-06-23 08:07:59 浏览: 172
A Wavelet-Collocation-Based Trajectory Piecewise-Linear Algorithm for Time-Domain Model-Order Reduction of Nonlinear Circuits
根据代码中的文件名,我们可以猜测`piecewise.jag`是一个JAGS模型文件,其中包含了模型的定义。以下是该模型文件的代码示例:
```
model {
# Priors
beta ~ dnorm(0, 1.0E-6)
for (j in 1:J) {
lam[j] ~ dgamma(0.01, 0.01)
}
# Likelihood
for (i in 1:n) {
# Find which interval the observation falls in
for (k in 1:K) {
if (t[i] < a[k+1]) {
# Compute the hazard rate using the appropriate lambda value
h[i] <- lam[k] * exp(beta * Z[i])
break
}
}
# Compute the survival probability and likelihood
S[i] <- exp(-cumsum(h[1:i] * diff(a[1:(i+1)])))
d[i] ~ dbern(S[i] - S[i+1])
}
}
```
在这个模型中,我们首先对参数进行了先验分布的设定,其中`beta`服从均值为0方差为1.0E-6的正态分布,`lam`服从参数为0.01的gamma分布。然后我们使用观测数据来计算似然函数,其中我们假设在每个时间间隔内,风险率(hazard rate)服从参数为对应的`lam`值的指数分布,同时风险率还可能会受到变量`Z`的影响。根据风险率可以计算出生存概率`S`,最终使用`dbern`来表示观测数据`d`的似然函数。
阅读全文