pandas对缺失值处理
时间: 2024-04-26 12:17:58 浏览: 105
详解Pandas 处理缺失值指令大全
5星 · 资源好评率100%
pandas是一个强大的数据处理库,提供了多种方法来处理缺失值。下面是pandas对缺失值处理的几种常用方法:
1. 删除缺失值:可以使用`dropna()`函数删除包含缺失值的行或列。可以通过设置参数来控制删除的方式,例如`axis`参数指定删除行还是列,`how`参数指定删除方式(any表示只要有一个缺失值就删除,all表示全部缺失值才删除)。
2. 填充缺失值:可以使用`fillna()`函数将缺失值替换为指定的值。可以通过设置参数来控制填充的方式,例如使用均值、中位数、众数等进行填充。
3. 插值填充:可以使用`interpolate()`函数进行插值填充。插值填充是根据已知数据点之间的关系,通过插值算法来推测缺失值。
4. 使用默认值填充:可以使用`fillna()`函数将缺失值替换为默认值。可以通过设置参数来指定默认值。
5. 使用前向填充或后向填充:可以使用`ffill()`函数进行前向填充,使用`bfill()`函数进行后向填充。前向填充是用前一个非缺失值来填充缺失值,后向填充是用后一个非缺失值来填充缺失值。
阅读全文