58086 linkage 20 0 3214820 1.9g 10668 S 2305 0.5 67:04.91 PMManager_1
时间: 2024-02-10 07:55:54 浏览: 103
As an AI language model, I am not able to provide information about specific individuals or systems. However, based on the information provided, it appears to be a process running on a computer with the name "PMManager_1". The process ID is "58086" and it is currently utilizing 20% of the CPU. The process has been running for 67 hours and 4 minutes, and has a memory usage of 1.9 GB. The name "linkage" may indicate that the process is involved in linking or connecting different components or systems.
相关问题
cannot declare member function ‘static int LabelParse::PrepareForParse(std::__cxx11::string&, std::bitset<200ul>&)’ to have static linkage [-fpermissive] cannot declare member function ‘static int LabelParse::PrepareForParse(std::__cxx11::string&, std::bitset<200ul>&)’ to have static linkage [-fpermissive]cannot declare member function ‘static int LabelParse::PrepareForParse(std::__cxx11::string&, std::bitset<200ul>&)’ to have static linkage [-fpermissive]
这个错误提示说明在类的定义中,尝试将成员函数`PrepareForParse`声明为静态成员函数,但是却指定了静态链接。在C++中,成员函数默认是非静态的,并且具有隐式的this指针,因此不需要显式指定为静态链接。
要解决这个问题,只需要将成员函数`PrepareForParse`声明为普通的非静态成员函数即可。例如:
```cpp
class LabelParse {
public:
int PrepareForParse(std::string& input, std::bitset<200>& bits);
};
```
不需要在声明中加上`static`关键字。这样就可以将`PrepareForParse`作为普通的成员函数使用,可以通过类的对象来调用该函数。
X = data[data.columns[1:]] print(X.describe()) std = preprocessing.StandardScaler() X_std = std.fit_transform(X) db = DBSCAN(eps=0.1, min_samples=5, metric='precomputed') db.fit_predict(X_std) # 绘制簇树状图 dbscan_model = DBSCAN(eps=0.1, min_samples=5) dbscan_model.fit(X_std) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[dbscan_model.core_sample_indices_] = True labels = dbscan_model.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) plt.figure(figsize=(10, 7)) G = hierarchy.dendrogram( hierarchy.linkage(X_std.toarray(), method='ward'), truncate_mode='level', p=n_clusters_, show_contracted=True ) plt.xlabel('Density threshold') plt.ylabel('Number of clusters') plt.show()
好的,以下是我为您提供的改进版本:
1. 变量名尽量使用具有描述性的名称,方便自己和他人理解代码含义。
2. 尽量避免单行代码过长,可将其拆分成多行。
3. 将代码分成若干个函数,提高代码的可读性和可维护性。
4. 为了增加代码的可移植性,可以添加注释来解释代码的作用。
5. 如果可能,可以使用面向对象的编程风格,这样可以更好地封装功能和数据,方便代码重用。
改进后的代码如下:
```python
from sklearn.cluster import DBSCAN
from sklearn import preprocessing
from scipy.cluster import hierarchy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def load_data(filename):
"""从文件中加载数据"""
data = pd.read_csv(filename)
return data
def preprocess_data(X):
"""数据预处理"""
std = preprocessing.StandardScaler()
X_std = std.fit_transform(X)
return X_std
def dbscan_clustering(X_std, eps, min_samples):
"""使用DBSCAN算法进行聚类"""
dbscan_model = DBSCAN(eps=eps, min_samples=min_samples)
dbscan_model.fit(X_std)
return dbscan_model
def plot_cluster_dendrogram(X_std, n_clusters):
"""绘制聚类树状图"""
G = hierarchy.dendrogram(
hierarchy.linkage(X_std.toarray(), method='ward'),
truncate_mode='level',
p=n_clusters,
show_contracted=True
)
plt.xlabel('Density threshold')
plt.ylabel('Number of clusters')
plt.show()
if __name__ == '__main__':
# 加载数据
data = load_data('data.csv')
# 数据预处理
X = data[data.columns[1:]]
X_std = preprocess_data(X)
# DBSCAN聚类
dbscan_model = dbscan_clustering(X_std, eps=0.1, min_samples=5)
# 绘制聚类树状图
labels = dbscan_model.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
plot_cluster_dendrogram(X_std, n_clusters_)
```
当然,这只是一种改进的思路,具体的实现可能需要根据您的需求和实际情况进行调整。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)