解释一下下列代码wMatrix=zeros(x,y);%权重矩阵 Tq=0.8;%阈值,可设置 for i=2:x-1 for j=2:y-1 if result(i,j)==255%如果是初选点 gu2=0.0; gv2=0.0; guv=0.0; for ii=i-1:i for jj=j-1:j gu2=gu2+(pic_bw(ii+1,jj+1)-pic_bw(ii,jj))^2; gv2=gv2+(pic_bw(ii,jj+1)-pic_bw(ii+1,jj))^2; guv=guv+(pic_bw(ii+1,jj+1)-pic_bw(ii,jj))*(pic_bw(ii,jj+1)-pic_bw(ii+1,jj)); end end DetN=gu2*gv2-guv^2; trN=gu2+gv2; q=4*DetN/(trN*trN);
时间: 2023-12-26 15:04:57 浏览: 117
这段代码是一个计算权重矩阵的算法,用于在特征点检测的基础上对特征点进行筛选和优化。
首先,它创建了一个与原始图像大小相同的矩阵 `wMatrix`,用于记录每个像素的权重值。然后,对特征点检测结果矩阵 `result` 中的每个特征点进行处理,计算该特征点周围的像素与其灰度值的差异,以此来计算该像素的权重值。具体来说,对于每个特征点,该算法会在其周围3x3的像素矩阵上进行计算,分别计算出水平方向和竖直方向上的梯度值及其乘积,并根据这些值计算出一个权重值 `q`。如果该权重值大于设定的阈值 `Tq`,则认为该特征点是一个好的特征点,对应的权重矩阵 `wMatrix` 中的值设置为该点的权重值 `q`;否则,将该特征点的权重值设为0。
最终,`wMatrix` 中每个像素的权重值将用于特征点的匹配和对齐等操作。
阅读全文