yolov5如何修改损失函数
时间: 2023-11-04 11:53:37 浏览: 151
基于YOLOv7使用KLD损失修改为旋转目标检测源代码+数据集+权重文件
Yolov5的损失函数是在PyTorch中实现的,如果想要修改损失函数,需要对其源代码进行修改。
下面是一个简单的例子,演示如何修改Yolov5的损失函数:
1. 打开`models/yolo.py`文件,找到`compute_loss()`函数。
2. 在该函数中,可以看到损失函数的计算过程。例如,YOLOv5s的损失函数计算代码如下:
```
loss, loss_items = 0, []
for i, pi in enumerate(pred):
# Prepare targets
if i in [3, 4, 5]:
# 3: large obj, 4: medium obj, 5: small obj
obj, ignore = t[1], t[2]
m = torch.sigmoid
else:
# 0: x, 1: y, 2: w, 3: h, 4: obj, 5: cls
obj, ignore = t[4], t[3] & torch.lt(t[4], 1)
m = torch.nn.functional.one_hot if i == 0 else torch.sigmoid
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.nclass], device=obj.device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.obj], device=obj.device))
BCEpos = nn.BCEWithLogitsLoss()
lcls, lbox, lobj = 0, 0, 0
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_bce(pi[ignore == 0], t[5][ignore == 0], self.smooth_eps, self.nclass)
# Losses
if len(cp):
lcls = BCEcls(pi[ignore == 0], cp)
if len(cn):
lcls += BCEcls(pi[ignore == 0], cn)
if obj.sum() > 0:
lobj = BCEobj(pi[obj > 0], obj[obj > 0])
lbox = BCEpos(pi[obj > 0], t[0][obj > 0]) + \
BCEpos(pi[obj > 0], t[1][obj > 0]) + \
BCEpos(pi[obj > 0], t[2][obj > 0]) + \
BCEpos(pi[obj > 0], t[3][obj > 0])
loss_items.append([lbox, lobj, lcls])
loss += lbox + lobj + lcls
```
3. 如果要修改损失函数,可以改变BCEWithLogitsLoss的参数,或者在计算损失时增加其他的项。例如,如果要增加一个正则化项,可以在计算损失时增加该项的计算。修改后的代码如下:
```
loss, loss_items = 0, []
for i, pi in enumerate(pred):
# Prepare targets
if i in [3, 4, 5]:
# 3: large obj, 4: medium obj, 5: small obj
obj, ignore = t[1], t[2]
m = torch.sigmoid
else:
# 0: x, 1: y, 2: w, 3: h, 4: obj, 5: cls
obj, ignore = t[4], t[3] & torch.lt(t[4], 1)
m = torch.nn.functional.one_hot if i == 0 else torch.sigmoid
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.nclass], device=obj.device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.obj], device=obj.device))
BCEpos = nn.BCEWithLogitsLoss()
lcls, lbox, lobj, lreg = 0, 0, 0, 0
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_bce(pi[ignore == 0], t[5][ignore == 0], self.smooth_eps, self.nclass)
# Losses
if len(cp):
lcls = BCEcls(pi[ignore == 0], cp)
if len(cn):
lcls += BCEcls(pi[ignore == 0], cn)
if obj.sum() > 0:
lobj = BCEobj(pi[obj > 0], obj[obj > 0])
lbox = BCEpos(pi[obj > 0], t[0][obj > 0]) + \
BCEpos(pi[obj > 0], t[1][obj > 0]) + \
BCEpos(pi[obj > 0], t[2][obj > 0]) + \
BCEpos(pi[obj > 0], t[3][obj > 0])
lreg = torch.sum(torch.square(pi[obj > 0] - t[0][obj > 0])) # regularization term
loss_items.append([lbox, lobj, lcls, lreg])
loss += lbox + lobj + lcls + lreg
```
4. 保存修改后的代码,并重新训练模型即可。
阅读全文