给我设计一个用于DOA估计的CNN仿真代码
时间: 2024-09-13 18:15:10 浏览: 36
在设计用于DOA (Direction of Arrival) 估计的CNN (Convolutional Neural Network) 仿真代码时,我们需要考虑几个关键步骤。以下是一个简化的Python示例,使用Keras库作为框架:
```python
# 导入所需的库
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, Flatten, Dense, Dropout
from sklearn.datasets import make_blobs
from scipy.signal import fftconvolve
# 假设我们有MIMO雷达数据生成函数
def generate_MIMORadarData(M, N, K):
# ... (这里编写数据生成代码)
return X_train, y_train, X_test, y_test
# 定义CNN模型
def DOA_CNN_model(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax')) # 输出层用于分类
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# 参数设定
input_shape = (data_width, data_height, channels) # 根据你的数据调整
num_classes = K # DOA类别数
epochs = 50
batch_size = 32
# 数据预处理(假设X_train是二维数组)
X_train = X_train.reshape(-1, *input_shape)
X_test = X_test.reshape(-1, *input_shape)
# 生成类别标签
y_train_cat = to_categorical(y_train, num_classes)
y_test_cat = to_categorical(y_test, num_classes)
# 训练模型
model = DOA_CNN_model(input_shape, num_classes)
history = model.fit(X_train, y_train_cat, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test_cat))
# 评估模型性能
loss, accuracy = model.evaluate(X_test, y_test_cat)
print(f"Test Accuracy: {accuracy}")
阅读全文