深度强化学习 online

时间: 2023-10-13 14:02:55 浏览: 46
深度强化学习 online (在线学习)是指在强化学习中,代理通过与环境交互实时进行学习和决策,而非事先获得全部训练数据。在这种学习方式下,代理会根据实时的环境反馈和奖励信号来调整自己的策略以最大化累积奖励。 深度强化学习 online 在实践中有着广泛的应用。其优势在于能够适应复杂、动态的环境,并能与实际场景相连续地进行学习,从而提高代理的性能。通过在线学习,代理能够从与环境的交互中即时获取新的经验和知识,不断优化自己的策略,逐步实现持续优化。 深度强化学习 online 面临一些挑战。首先,线上学习需要在实时环境中进行,因此需要考虑到实时性要求和计算效率。其次,与线下学习相比,线上学习由于难以控制环境,可能面临更大的风险,需要加强对安全性和稳定性的关注。 为了解决这些挑战,研究者们提出了一些方法。例如,可以通过使用经验回放机制来缓解实时性要求,即将先前的经验存储下来,并在之后进行批量学习;另外,可以采用逐步更新的方式,将训练过程分为多个阶段进行,以减少对环境造成的影响。 总之,深度强化学习 online 是一种实时学习方式,在复杂环境中具有广泛应用前景。通过不断调整策略和积累经验,代理能够逐步提高自己的性能,并在不断学习中实现优化和进步。
相关问题

def train(q_online, q_target, memory, optimizer): for i in range(1): s, a, r, s_ = memory.sample(batch_size) # 4个都是二维张量,第0维度是minibatch q_online_out = q_online(s) # 这里输入q_online网络的s也是minibatch q_value_online = q_online_out.gather(1, a.long()) q_value_max = q_target(s_).max(1)[0].unsqueeze(1) target = r + gamma * q_value_max # 暂时先不考虑终结态的特殊情况 loss = F.smooth_l1_loss(q_value_online, target) optimizer.zero_grad() loss.backward() # 计算梯度 optimizer.step() # 更新梯度 return loss.item()

这段代码是一个训练函数,它使用了深度强化学习中的 Q-learning 算法来更新 Q 网络的参数。下面是对这段代码的解释: 1. `train(q_online, q_target, memory, optimizer)`: 这是一个训练函数,接受四个参数:`q_online` 表示在线网络,`q_target` 表示目标网络,`memory` 表示经验回放缓存,`optimizer` 表示优化器。 2. `for i in range(1):` 这个循环只执行一次,可能是为了在训练过程中进行一次更新。 3. `s, a, r, s_ = memory.sample(batch_size)`: 从经验回放缓存中随机采样一个大小为 `batch_size` 的小批量数据,其中 `s` 是当前状态,`a` 是采取的动作,`r` 是获得的奖励,`s_` 是下一个状态。 4. `q_online_out = q_online(s)`: 将当前状态 `s` 输入到在线网络 `q_online` 中,得到对应的 Q 值估计。 5. `q_value_online = q_online_out.gather(1, a.long())`: 根据采取的动作 `a` 从 Q 值估计中选择相应的值。这里使用了 `gather()` 函数。 6. `q_value_max = q_target(s_).max(1)[0].unsqueeze(1)`: 将下一个状态 `s_` 输入到目标网络 `q_target` 中,得到下一个状态的最大 Q 值,并将其扩展为一个列向量。 7. `target = r + gamma * q_value_max`: 根据 Q-learning 的更新公式,计算目标 Q 值。 8. `loss = F.smooth_l1_loss(q_value_online, target)`: 计算 Q 值估计与目标 Q 值之间的损失,这里使用了平滑 L1 损失函数。 9. `optimizer.zero_grad()`: 清零优化器的梯度。 10. `loss.backward()`: 计算损失函数关于参数的梯度。 11. `optimizer.step()`: 使用优化器更新网络的参数。 12. `return loss.item()`: 返回损失函数的数值表示。 请注意,这段代码中只进行了一次训练迭代,并且在此之后就直接返回了损失值。通常情况下,训练会进行多个迭代,并且可能会有其他的监控指标和记录操作。具体的训练过程可能需要在外部进行更多的控制和调用。

翻译一下:1)在移动设备与边缘服务器处于直连通信状态下,基于非正交多址技术通信方式,研究了利用深度强化学习算法进行通信资源分配策略。为了满足移动设备卸载计算密集型任务的要求,本策略通过联合优化多用户共享子信道的匹配和用户传输功率的分配,构建了由单基站和多子信道组成的移动边缘计算通信架构,确立了系统和速率最大化的目标。由于提出的目标问题具有非凸性,并且在线通信环境无法预测,因此设计了禁忌深度Q网络-深度确定性策略梯度联合算法(Tabu Tag Deep Q Network- Deep Deterministic Policy Gradient,TTDQN-DDPG)来求解目标模型。仿真结果表明,相比较传统通信技术和基于普通的深度强化学习通信算法,本文设计的 TTDQN-DDPG算法能够明显提高移动边缘计算通信的系统和速率。

1) In the direct communication between mobile devices and edge servers based on non-orthogonal multiple access technology, a communication resource allocation strategy utilizing deep reinforcement learning algorithms was studied. In order to meet the demands of offloading computation-intensive tasks from mobile devices, this strategy constructed a mobile edge computing communication architecture consisting of a single base station and multiple sub-channels, by jointly optimizing the matching of multiple user-shared sub-channels and the allocation of user transmission power, and established the objectives of maximizing the system and rate. Due to the non-convexity of the proposed objective problem and the unpredictable online communication environment, a Tabu Tag Deep Q Network- Deep Deterministic Policy Gradient (TTDQN-DDPG) joint algorithm was developed to solve the objective model. Simulation results indicate that the TTDQN-DDPG algorithm designed in this paper can significantly improve the system and rate of mobile edge computing communication compared to traditional communication technologies and ordinary deep reinforcement learning communication algorithms.

相关推荐

Recall that to solve (P2) in the tth time frame, we observe ξt 􏰗 {hti, Qi(t), Yi(t)}Ni=1, consisting of the channel gains {hti}Ni=1 and the system queue states {Qi(t),Yi(t)}Ni=1, and accordingly decide the control action {xt, yt}, including the binary offloading decision xt and the continuous resource allocation yt 􏰗 􏰄τit, fit, eti,O, rit,O􏰅Ni=1. A close observation shows that although (P2) is a non-convex optimization problem, the resource allocation problem to optimize yt is in fact an “easy” convex problem if xt is fixed. In Section IV.B, we will propose a customized algorithm to efficiently obtain the optimal yt given xt in (P2). Here, we denote G􏰀xt,ξt􏰁 as the optimal value of (P2) by optimizing yt given the offloading decision xt and parameter ξt. Therefore, solving (P2) is equivalent to finding the optimal offloading decision (xt)∗, where (P3) : 􏰀xt􏰁∗ = arg maximize G 􏰀xt, ξt􏰁 . (20) xt ∈{0,1}N In general, obtaining (xt)∗ requires enumerating 2N offloading decisions, which leads to significantly high computational complexity even when N is moderate (e.g., N = 10). Other search based methods, such as branch-and-bound and block coordinate descent [29], are also time-consuming when N is large. In practice, neither method is applicable to online decision- making under fast-varying channel condition. Leveraging the DRL technique, we propose a LyDROO algorithm to construct a policy π that maps from the input ξt to the optimal action (xt)∗, i.e., π : ξt 􏰕→ (xt)∗, with very low complexity, e.g., tens of milliseconds computation time (i.e., the time duration from observing ξt to producing a control action {xt, yt}) when N = 10.,为什么要使用深度强化学习

Recall that to solve (P2) in the tth time frame, we observe ξt 􏰗 {hti, Qi(t), Yi(t)}Ni=1, consisting of the channel gains {hti}Ni=1 and the system queue states {Qi(t),Yi(t)}Ni=1, and accordingly decide the control action {xt, yt}, including the binary offloading decision xt and the continuous resource allocation yt 􏰗 􏰄τit, fit, eti,O, rit,O􏰅Ni=1. A close observation shows that although (P2) is a non-convex optimization problem, the resource allocation problem to optimize yt is in fact an “easy” convex problem if xt is fixed. In Section IV.B, we will propose a customized algorithm to efficiently obtain the optimal yt given xt in (P2). Here, we denote G􏰀xt,ξt􏰁 as the optimal value of (P2) by optimizing yt given the offloading decision xt and parameter ξt. Therefore, solving (P2) is equivalent to finding the optimal offloading decision (xt)∗, where (P3) : 􏰀xt􏰁∗ = arg maximize G 􏰀xt, ξt􏰁 . (20) xt ∈{0,1}N In general, obtaining (xt)∗ requires enumerating 2N offloading decisions, which leads to significantly high computational complexity even when N is moderate (e.g., N = 10). Other search based methods, such as branch-and-bound and block coordinate descent [29], are also time-consuming when N is large. In practice, neither method is applicable to online decision- making under fast-varying channel condition. Leveraging the DRL technique, we propose a LyDROO algorithm to construct a policy π that maps from the input ξt to the optimal action (xt)∗, i.e., π : ξt 􏰕→ (xt)∗, with very low complexity, e.g., tens of milliseconds computation time (i.e., the time duration from observing ξt to producing a control action {xt, yt}) when N = 10.,深度强化学习的状态空间、动作、目的是什么,

Recall that to solve (P2) in the tth time frame, we observe ξt 􏰗 {hti, Qi(t), Yi(t)}Ni=1, consisting of the channel gains {hti}Ni=1 and the system queue states {Qi(t),Yi(t)}Ni=1, and accordingly decide the control action {xt, yt}, including the binary offloading decision xt and the continuous resource allocation yt 􏰗 􏰄τit, fit, eti,O, rit,O􏰅Ni=1. A close observation shows that although (P2) is a non-convex optimization problem, the resource allocation problem to optimize yt is in fact an “easy” convex problem if xt is fixed. In Section IV.B, we will propose a customized algorithm to efficiently obtain the optimal yt given xt in (P2). Here, we denote G􏰀xt,ξt􏰁 as the optimal value of (P2) by optimizing yt given the offloading decision xt and parameter ξt. Therefore, solving (P2) is equivalent to finding the optimal offloading decision (xt)∗, where (P3) : 􏰀xt􏰁∗ = arg maximize G 􏰀xt, ξt􏰁 . (20) xt ∈{0,1}N In general, obtaining (xt)∗ requires enumerating 2N offloading decisions, which leads to significantly high computational complexity even when N is moderate (e.g., N = 10). Other search based methods, such as branch-and-bound and block coordinate descent [29], are also time-consuming when N is large. In practice, neither method is applicable to online decision- making under fast-varying channel condition. Leveraging the DRL technique, we propose a LyDROO algorithm to construct a policy π that maps from the input ξt to the optimal action (xt)∗, i.e., π : ξt 􏰕→ (xt)∗, with very low complexity, e.g., tens of milliseconds computation time (i.e., the time duration from observing ξt to producing a control action {xt, yt}) when N = 10.,深度强化学习的状态空间等内容是什么

Recall that to solve (P2) in the tth time frame, we observe ξt 􏰗 {hti, Qi(t), Yi(t)}Ni=1, consisting of the channel gains {hti}Ni=1 and the system queue states {Qi(t),Yi(t)}Ni=1, and accordingly decide the control action {xt, yt}, including the binary offloading decision xt and the continuous resource allocation yt 􏰗 􏰄τit, fit, eti,O, rit,O􏰅Ni=1. A close observation shows that although (P2) is a non-convex optimization problem, the resource allocation problem to optimize yt is in fact an “easy” convex problem if xt is fixed. In Section IV.B, we will propose a customized algorithm to efficiently obtain the optimal yt given xt in (P2). Here, we denote G􏰀xt,ξt􏰁 as the optimal value of (P2) by optimizing yt given the offloading decision xt and parameter ξt. Therefore, solving (P2) is equivalent to finding the optimal offloading decision (xt)∗, where (P3) : 􏰀xt􏰁∗ = arg maximize G 􏰀xt, ξt􏰁 . (20) xt ∈{0,1}N In general, obtaining (xt)∗ requires enumerating 2N offloading decisions, which leads to significantly high computational complexity even when N is moderate (e.g., N = 10). Other search based methods, such as branch-and-bound and block coordinate descent [29], are also time-consuming when N is large. In practice, neither method is applicable to online decision- making under fast-varying channel condition. Leveraging the DRL technique, we propose a LyDROO algorithm to construct a policy π that maps from the input ξt to the optimal action (xt)∗, i.e., π : ξt 􏰕→ (xt)∗, with very low complexity, e.g., tens of milliseconds computation time (i.e., the time duration from observing ξt to producing a control action {xt, yt}) when N = 10深度强化学习的动作是什么

Algorithm 1: The online LyDROO algorithm for solving (P1). input : Parameters V , {γi, ci}Ni=1, K, training interval δT , Mt update interval δM ; output: Control actions 􏰕xt,yt􏰖Kt=1; 1 Initialize the DNN with random parameters θ1 and empty replay memory, M1 ← 2N; 2 Empty initial data queue Qi(1) = 0 and energy queue Yi(1) = 0, for i = 1,··· ,N; 3 fort=1,2,...,Kdo 4 Observe the input ξt = 􏰕ht, Qi(t), Yi(t)􏰖Ni=1 and update Mt using (8) if mod (t, δM ) = 0; 5 Generate a relaxed offloading action xˆt = Πθt 􏰅ξt􏰆 with the DNN; 6 Quantize xˆt into Mt binary actions 􏰕xti|i = 1, · · · , Mt􏰖 using the NOP method; 7 Compute G􏰅xti,ξt􏰆 by optimizing resource allocation yit in (P2) for each xti; 8 Select the best solution xt = arg max G 􏰅xti , ξt 􏰆 and execute the joint action 􏰅xt , yt 􏰆; { x ti } 9 Update the replay memory by adding (ξt,xt); 10 if mod (t, δT ) = 0 then 11 Uniformly sample a batch of data set {(ξτ , xτ ) | τ ∈ St } from the memory; 12 Train the DNN with {(ξτ , xτ ) | τ ∈ St} and update θt using the Adam algorithm; 13 end 14 t ← t + 1; 15 Update {Qi(t),Yi(t)}N based on 􏰅xt−1,yt−1􏰆 and data arrival observation 􏰙At−1􏰚N using (5) and (7). i=1 i i=1 16 end With the above actor-critic-update loop, the DNN consistently learns from the best and most recent state-action pairs, leading to a better policy πθt that gradually approximates the optimal mapping to solve (P3). We summarize the pseudo-code of LyDROO in Algorithm 1, where the major computational complexity is in line 7 that computes G􏰅xti,ξt􏰆 by solving the optimal resource allocation problems. This in fact indicates that the proposed LyDROO algorithm can be extended to solve (P1) when considering a general non-decreasing concave utility U (rit) in the objective, because the per-frame resource allocation problem to compute G􏰅xti,ξt􏰆 is a convex problem that can be efficiently solved, where the detailed analysis is omitted. In the next subsection, we propose a low-complexity algorithm to obtain G 􏰅xti, ξt􏰆. B. Low-complexity Algorithm for Optimal Resource Allocation Given the value of xt in (P2), we denote the index set of users with xti = 1 as Mt1, and the complementary user set as Mt0. For simplicity of exposition, we drop the superscript t and express the optimal resource allocation problem that computes G 􏰅xt, ξt􏰆 as following (P4) : maximize 􏰀j∈M0 􏰕ajfj/φ − Yj(t)κfj3􏰖 + 􏰀i∈M1 {airi,O − Yi(t)ei,O} (28a) τ,f,eO,rO 17 ,算法建立的模型是什么

最新推荐

recommend-type

Online Learning 算法简介

Online Learning 算法简介,希望可以对理解Online Learning 算法有所帮助!
recommend-type

office online server2016中文版 详细安装步骤

一个服务器搭建 office online server2016 中文版 office online server2016中文版 详细安装步骤
recommend-type

Judge Online 在线评测系统介绍及词汇表

Judge Online 在线评测系统介绍及词汇表 Judge Online 在线评测系统介绍及词汇表
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这