写一段基于pytorch的unet神经网络求解回归任务的python代码
时间: 2023-06-02 22:07:45 浏览: 216
PyTorch上搭建简单神经网络实现回归和分类的示例.pdf
好的,下面是基于PyTorch的UNet神经网络求解回归任务的Python代码示例。
```
import torch
import torch.nn as nn
import torch.optim as optim
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.down1 = DoubleConv(1, 64)
self.down2 = DoubleConv(64, 128)
self.down3 = DoubleConv(128, 256)
self.down4 = DoubleConv(256, 512)
self.up1 = Up(512, 256)
self.up2 = Up(256, 128)
self.up3 = Up(128, 64)
self.up4 = Up(64, 32)
self.out = nn.Sequential(nn.Conv2d(32, 1, kernel_size=1), nn.Sigmoid())
self.maxpool = nn.MaxPool2d(2, stride=2)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
def forward(self, x):
x1 = self.down1(x)
x2 = self.maxpool(x1)
x3 = self.down2(x2)
x4 = self.maxpool(x3)
x5 = self.down3(x4)
x6 = self.maxpool(x5)
x7 = self.down4(x6)
x = self.upsample(x7)
x8 = torch.cat([x, x5], dim=1)
x8 = self.up1(x8)
x = self.upsample(x8)
x9 = torch.cat([x, x3], dim=1)
x9 = self.up2(x9)
x = self.upsample(x9)
x10 = torch.cat([x, x1], dim=1)
x10 = self.up3(x10)
x = self.upsample(x10)
x = self.up4(x)
x = self.out(x)
return x
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
class Up(nn.Module):
def __init__(self, in_channels, out_channels):
super(Up, self).__init__()
self.conv = DoubleConv(in_channels + out_channels, out_channels)
def forward(self, x1, x2):
x1 = self.upsample(x1)
diffX = x2.size()[2] - x1.size()[2]
diffY = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2))
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
model = UNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 数据准备
...
# 训练过程
for epoch in range(num_epochs):
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
```
阅读全文