pytorch实现rnn并且对mnist进行分类
时间: 2023-07-11 20:24:21 浏览: 107
好的,我可以为您提供相关的代码和步骤。
首先,您需要导入必要的库和数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dsets
import torchvision.transforms as transforms
# 加载 MNIST 数据集
train_dataset = dsets.MNIST(root='./data',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = dsets.MNIST(root='./data',train=False,transform=transforms.ToTensor(),download=True)
# 设置超参数
batch_size = 100
learning_rate = 0.01
num_epochs = 10
```
接下来,您需要定义一个 RNN 模型。在这个示例中,我们将使用一个简单的单层 RNN,该模型接受 MNIST 图像序列并输出一个分类标签。
```python
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# 初始化隐藏状态
h0 = torch.zeros(1, x.size(0), self.hidden_size)
# 前向传播 RNN
out, _ = self.rnn(x, h0)
# 取 RNN 的输出的最后一个时间步
out = self.fc(out[:, -1, :])
return out
```
接下来,您需要将数据加载到批次中,并将其输入到 RNN 模型中进行训练。
```python
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)
model = RNN(28, 128, 10) # 输入大小为 28(序列长度),输出大小为 10(类别数)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.view(-1, 28, 28) # 将图像序列转换为 28x28 的矩阵
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.item()))
```
最后,您可以使用测试数据集评估模型的性能:
```python
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.view(-1, 28, 28)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
希望这可以帮助您开始使用 PyTorch 实现 RNN 并在 MNIST 上进行分类。
阅读全文