plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC曲线(面积 = %0.2f)' % roc_auc)
时间: 2024-12-04 16:23:29 浏览: 23
在Python的matplotlib库中,`plt.plot()`函数用于创建折线图。当你看到这样的代码片段:
```python
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC曲线(面积 = %0.2f)' % roc_auc)
```
这里是在绘制Receiver Operating Characteristic (ROC)曲线,其中:
- `fpr`代表False Positive Rate(假阳性率),通常表示模型误报的比例。
- `tpr`代表True Positive Rate(真正率),即模型正确识别出正样本的能力。
- `color='darkorange'`指定了线条的颜色为深橙色。
- `lw=2`设置线宽为2,增加图形的可见度。
- `label='ROC曲线(面积 = %0.2f)' % roc_auc`设置了曲线的标签,显示了ROC曲线下的面积(Area Under the Curve, AUC),`roc_auc`是一个之前计算得到的ROC曲线的AUC值,`%0.2f`表示保留两位小数。
这行代码就是在生成ROC曲线并为其添加标签,同时展示了模型性能的一个重要指标——AUC值。
相关问题
ValueError: Found input variables with inconsistent numbers of samples: [400, 792]报错在from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import roc_curve, auc lb = LabelBinarizer() y_test_binary = lb.fit_transform(y_test) y_test_binary = y_test_binary.ravel() max_len_1 = max(len(y_test_binary), len(y_pred)) y_test_binary = np.pad(y_test_binary, max_len_1-len(y_test_binary)) y_pred = np.pad(y_pred, max_len_1-len(y_pred)) # 只使用第一列 fpr, tpr, thresholds = roc_curve(y_test_binary, y_pred) roc_auc = auc(fpr, tpr) # 绘制ROC曲线 plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (AUC = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()中
这个错误是由于 `y_test` 和 `y_pred` 的样本数量不同导致的。可以使用以下代码来确保二者具有相同数量的样本:
```
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import roc_curve, auc
lb = LabelBinarizer()
y_test_binary = lb.fit_transform(y_test)
y_test_binary = y_test_binary.ravel()
max_len = max(len(y_test_binary), len(y_pred))
y_test_binary = np.pad(y_test_binary, (0, max_len - len(y_test_binary)))
y_pred = np.pad(y_pred, (0, max_len - len(y_pred)))
fpr, tpr, thresholds = roc_curve(y_test_binary, y_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
```
这里使用 `np.pad()` 来填充数组,以使其具有相同的长度。在 `np.pad()` 中,第一个参数是要填充的数组,第二个参数是要添加的填充宽度,第三个参数是填充的模式。在这个例子中,我们在第一个维度上添加了填充,因此在第二个参数中使用了元组 `(0, max_len - len(y_test_binary))`。
y_scores = y_predY = [] for i in range(len(y_test)): y_test[i] = i Y.append(y_test[i]) i = i+1 print(Y) T = np.array(Y) print(T) Y_true = T[np.arange(T.shape[0])] num_class = len(np.unique(Y_true)) print(num_class) y_true = label_binarize(Y_true, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # lb = LabelBinarizer() # y_true = lb.fit_transform(Y_true) # 计算FPR和TPR fpr, tpr, thresholds = roc_curve(y_true.ravel(), y_scores.ravel()) # 计算AUC roc_auc = auc(fpr, tpr) # 绘制ROC曲线 plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
这段代码的作用是计算并绘制ROC曲线。其中,y_test是模型的测试集标签,y_pred是模型的预测结果。在代码中,首先将y_test中的每个元素都赋值为该元素的索引,然后将其存储在列表Y中。接下来,将Y转换为NumPy数组,并使用NumPy.unique函数计算Y_true中的唯一类别数。接着,使用sklearn库中的label_binarize函数将Y_true转换为二进制标签表示形式。最后,使用sklearn库中的roc_curve函数计算FPR、TPR和阈值,并使用sklearn库中的auc函数计算ROC曲线下的面积(AUC)。最后,使用matplotlib库绘制ROC曲线。如果你有问题或需要更多帮助,请提供更多上下文信息。
阅读全文