写一段pytorch条件生成对抗网络代码
时间: 2023-09-19 18:09:27 浏览: 87
好的,以下是一个简单的PyTorch条件生成对抗网络的代码:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
# 定义生成器网络
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.fc = nn.Sequential(
nn.Linear(latent_dim + num_classes, 128),
nn.BatchNorm1d(128),
nn.ReLU(True),
nn.Linear(128, 256),
nn.BatchNorm1d(256),
nn.ReLU(True),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(True),
nn.Linear(512, 784),
nn.Tanh()
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
out = self.fc(gen_input)
out = out.view(out.size(0), 1, 28, 28)
return out
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(num_classes, num_classes)
self.fc = nn.Sequential(
nn.Linear(num_classes + 784, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, img, labels):
d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1)
out = self.fc(d_in)
return out
# 定义一些超参数
num_epochs = 200
batch_size = 100
learning_rate = 0.0002
# 创建网络实例和优化器
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate)
optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate)
# 训练循环
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(data_loader):
# 准备数据
real_images = Variable(images)
labels = Variable(labels)
real_labels = Variable(torch.ones(batch_size))
fake_labels = Variable(torch.zeros(batch_size))
noise = Variable(torch.randn(batch_size, latent_dim))
# 训练判别器
optimizer_D.zero_grad()
real_output = discriminator(real_images, labels)
d_loss_real = criterion(real_output, real_labels)
d_loss_real.backward()
fake_images = generator(noise, labels)
fake_output = discriminator(fake_images, labels)
d_loss_fake = criterion(fake_output, fake_labels)
d_loss_fake.backward()
d_loss = d_loss_real + d_loss_fake
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
fake_images = generator(noise, labels)
fake_output = discriminator(fake_images, labels)
g_loss = criterion(fake_output, real_labels)
g_loss.backward()
optimizer_G.step()
```
注意这只是一个简单的示例,实际应用中可能需要进行更多的调整和优化。
阅读全文