卷积神经网络梯度下降
时间: 2024-04-02 12:30:10 浏览: 59
卷积层filter权重梯度的计算-卷积神经网络
卷积神经网络(Convolutional Neural Network,CNN)是一种常用于图像识别和计算机视觉任务的深度学习模型。梯度下降是CNN中用于优化模型参数的一种常见方法。
在CNN中,梯度下降用于更新网络中的权重和偏置,以最小化损失函数。梯度下降的目标是找到使损失函数最小化的参数值。具体来说,梯度下降通过计算损失函数对于每个参数的偏导数(即梯度),然后沿着梯度的反方向更新参数值。
CNN中的梯度下降可以分为两种类型:批量梯度下降(Batch Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)。
1. 批量梯度下降:批量梯度下降在每次迭代中使用整个训练集来计算梯度,并更新参数。这种方法可以保证收敛到全局最优解,但计算开销较大。
2. 随机梯度下降:随机梯度下降在每次迭代中只使用一个样本来计算梯度,并更新参数。这种方法计算开销较小,但可能会收敛到局部最优解。
为了平衡计算开销和收敛速度,通常使用一种介于批量梯度下降和随机梯度下降之间的方法,称为小批量梯度下降(Mini-batch Gradient Descent)。小批量梯度下降在每次迭代中使用一小部分训练样本来计算梯度,并更新参数。
阅读全文