将以下python代码改为matlabn1 = 32; n2 = n1; n3 = 3; r = 5; L1 = randn(n1,r,n3)/n1; L2 = randn(r,n2,n3)/n2; L = tprod(L1,L2); train_data = [32,32,3,100]; for i in range(100): train_data[:,:,:,i] = L1
时间: 2024-04-01 21:36:31 浏览: 80
以下是将Python代码改为MATLAB的代码:
n1 = 32;
n2 = n1;
n3 = 3;
r = 5;
L1 = randn(n1,r,n3)/n1;
L2 = randn(r,n2,n3)/n2;
L = tprod(L1,L2);
train_data = zeros(32,32,3,100);
for i = 1:100
train_data(:,:,:,i) = L1;
end
相关问题
clear clc T=3000; N=50*2^10; dt=T/N; R=4; Dt=R*dt; L=N/R; n1=randn(1,L); %产生标准正态分布的随机数或矩阵的函数1*N阶 n2=randn(1,L); n3=randn(1,L); n4=randn(1,L); %dW=sqrt(dt)*n; %一个非负实数的平方根 %W=cumsum(dW); %计算一个数组(dW)各行的累加值 Xzero=0.5,Yzero=0.3;%初值 0.03909 0.1762 Xtemp=Xzero; Ytemp=Yzero; a=5/27;b=32/27;c=32/135;d=2/15; sigma1=0.1;sigma2=0.1; Ytemp=Yzero; Xtemp=Xzero; for j=1:L %随机模型 %Winc=sum(dW(R*(j-1)+1:R*j)); Jtemp=j+1; Xtemp=Xtemp+(Xtemp.*(1-Xtemp-b.*Ytemp/(a+Xtemp))).*Dt+sigma1.*Xtemp.*n1(j).*sqrt(Dt)+(Xtemp.*((n1(j).*n1(j)-1).*Dt).*sigma1^2)/2; Ytemp=Ytemp+(Ytemp.*(d-Ytemp+c.*Xtemp/(a+Xtemp))).*Dt+sigma2.*Ytemp.*n2(j).*sqrt(Dt)+(Ytemp.*((n2(j).*n2(j)-1).*Dt).*sigma2^2)/2; Xem(j)=Xtemp; Yem(j)=Ytemp; Jstroges(j)=Jtemp; Xstroges(j)=Xtemp; Ystroges(j)=Ytemp; end 用上述代码画三维图像
上述代码中并没有包含绘制三维图像的部分。为了画出三维图像,你可以使用scatter3函数或者surf函数来绘制。
下面是一个使用scatter3函数绘制三维散点图的示例代码:
```matlab
figure;
scatter3(Xem, Yem, Jstroges, 'filled');
xlabel('X');
ylabel('Y');
zlabel('Time');
title('3D Scatter Plot');
```
这个示例代码中,我们使用scatter3函数绘制了Xem、Yem和Jstroges这三个变量的三维散点图。Xem和Yem表示随机微分方程组的模拟结果,Jstroges表示时间。你可以根据你的需求修改坐标轴标签和标题。
希望对你有帮助!如有更多问题,请随时提问。
2) 定义函数int randN1N2(int N1, int N2),该函数的功能是:生成并返回一个[N1, N2]之间均匀分布的随机整数,其中形参需满足N1 <= N2。
下面是实现该函数的示例代码:
```c++
#include <cstdlib>
int randN1N2(int N1, int N2) {
return rand() % (N2 - N1 + 1) + N1;
}
```
该函数首先利用C++中的rand函数生成一个[0, RAND_MAX]之间的随机整数,然后将其映射到[N1, N2]区间内。具体来说,将该随机数对区间长度(N2 - N1 + 1)取模,再加上N1,即可得到所需的随机整数。注意,这里使用%运算符求模,而不是除法运算,是因为%运算符可以保证余数始终为正数,从而保证生成的随机数在[N1, N2]之间。
阅读全文
相关推荐













