from sklearn.metrics import classification_report, confusion_matrix y_pred =best_dt.predict(X_test) print(classification_report(y_test,y_pred)举例并解释说明

时间: 2023-11-29 16:03:28 浏览: 26
假设代码运行后输出结果如下: ``` precision recall f1-score support 0 0.90 0.80 0.85 10 1 0.67 0.80 0.73 5 accuracy 0.80 15 macro avg 0.78 0.80 0.79 15 weighted avg 0.82 0.80 0.81 15 ``` 该输出结果是分类报告,可以看到,分类报告包括“precision”、“recall”和“f1-score”三个指标,以及各个类别的支持度(样本数),以及加权平均的指标值。 解释说明: - “precision”(精确率):模型预测出来的正例中真正是正例的比例。例如,对于标签为1的样本,模型预测为正例的有3个,其中有2个是真正的正例,那么precision为2/3=0.67。 - “recall”(召回率):真正是正例中被模型预测为正例的比例。例如,对于标签为1的样本,共有5个真正的正例,其中有4个被模型预测为正例,那么recall为4/5=0.8。 - “f1-score”:precision和recall的调和平均数,用于综合评估分类器的性能。f1-score越高,说明分类器的性能越好。 - “support”:各个类别的样本数。 - “accuracy”:模型在测试集上的准确率。 在该例子中,模型在标签为0的类别上的precision为0.9,recall为0.8;在标签为1的类别上的precision为0.67,recall为0.8。可以看到,该模型在标签为0的类别上的分类效果比较好,在标签为1的类别上有些不足。需要根据具体情况进行调整和改进。

相关推荐

from sklearn.neighbors import KNeighborsClassifier #导入 scikit-learn 库中的 KNeighborsClassifier 类,用于构建 k 近邻分类器模型 knn_model = KNeighborsClassifier() #创建一个 KNeighborsClassifier 对象,用于训练 k 近邻分类器模型。 knn_model.fit(X_train_std, y_train) #使用训练数据 X_train_std 和标签数据 y_train 来训练 k 近邻分类器模型。 print(knn_model.score(X_train_std, y_train)) #打印训练数据上的分类准确度得分。 print(knn_model.score(X_test_std, y_test)) #打印测试数据上的分类准确度得分。 from sklearn.metrics import classification_report, confusion_matrix #导入 scikit-learn 库中的 classification_report 和 confusion_matrix 函数,用于评估分类器模型的性能。 y_pred = knn_model.predict(X_test) #使用训练好的 k 近邻分类器模型对测试数据 X_test 做出预测。 print(classification_report(y_test, y_pred)) from sklearn.metrics import classification_report, confusion_matrix #导入 scikit-learn 库中的 classification_report 和 confusion_matrix 函数,用于评估分类器模型的性能。 y_pred = knn_model.predict(X_test) #使用训练好的 k 近邻分类器模型对测试数据 X_test 做出预测,将预测结果保存在 y_pred 变量中。 print(classification_report(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) #使用 confusion_matrix 函数计算分类器模型在测试数据上的混淆矩阵,并将其保存在 cm 变量中。其中,y_test 是测试数据的真实标签,y_pred 是分类器模型预测的标签。 plt.figure(figsize = (8,8)) #创建一个大小为 8x8 的图形窗口,用于展示可视化结果 sns.heatmap() #使用 seaborn 库中的 heatmap 函数绘制混淆矩阵的热力图 plt.xlabel("Predicted") #指定 x 轴的标签为“Predicted” plt.ylabel("Actual") #指定 y 轴的标签为“Actual” plt.show() 绘制热力图并进行解释

from sklearn.datasets import load_iris from sklearn. model_selection import train_test_split from sklearn.metrics import classification_report from sklearn. neighbors import KNeighborsClassifier from sklearn. metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn. metrics import confusion_matrix import seaborn as sns import scikitplot as skplt #加载数据集 iris = load_iris() data = iris['data'] label = iris['target'] #数据集的划分 x_train,x_test,y_train,y_test = train_test_split(data,label,test_size=0.3) print(x_train) #模型构建 model = KNeighborsClassifier(n_neighbors=5) model.fit(x_train,y_train) #模型评估 #(1)精确率,召回率,F1分数,准确率(宏平均和微平均) predict = model. predict(x_test) result = classification_report(y_test,predict) print(result) # (2) 混淆矩阵 confusion_matrix = confusion_matrix(y_test, predict) print('混淆矩阵:', confusion_matrix) sns.set(font_scale=1) sns.heatmap(confusion_matrix, annot=True, annot_kws={"size", 16}, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.ylabel('True label' ) plt.xlabel('Predicted label') plt.savefig('Confusion matrix. pdf') plt.show() #(3)ROC曲线 Y_pred_prob = model. predict_proba(x_test) plt.figure(figsize= (7,7)) ax= plt. subplot() skplt.metrics.plot_roc_curve(y_test,Y_pred_prob,ax= ax) ax.set_xlabel('False Positive Rate', fontsize = 20) ax.set_ylabel('True Positive Rate ',fontsize = 20) ax.set_title('ROC Areas ',fontsize = 20) plt.xlim((0, 1)) plt.ylim((0, 1)) plt.xticks(fontsize = 18) plt.yticks(fontsize = 18) plt.legend(fontsize =18) plt.savefig(' ROC.pdf') plt.show( ) #(4)P_R曲线 from sklearn.metrics import precision_recall_curve precision, recall, _ =precision_recall_curve(y_test) plt.fill_between(recall, precision,color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.0]) plt.xlim([0.0, 1.0]) plt.plot(recall, precision) plt.title("Precision-Recall") plt.show()

import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

matlab基于不确定性可达性优化的自主鲁棒操作.zip

matlab基于不确定性可达性优化的自主鲁棒操作.zip
recommend-type

pytest-2.8.0.zip

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

信息安全课程实验C++实现DES等算法源代码

信息安全课程实验C++实现DES等算法源代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依