info = st.empty() last_rows = pd.DataFrame(data=[0], columns=["data"])
时间: 2023-05-14 15:04:43 浏览: 113
这是一段 Python 代码,其中 st.empty() 是 Streamlit 库中的一个函数,用于创建一个空的输出区域,而 pd.DataFrame() 则是 Pandas 库中的一个函数,用于创建一个数据框。last_rows 是一个包含一个值为 0 的列名为 "data" 的数据框。这段代码的具体作用需要结合上下文来确定。
相关问题
#The fit of the methods must be done only using the real sequential data pca.fit(stock_data_reduced) pca_real = pd.DataFrame(pca.transform(stock_data_reduced)) pca_synth = pd.DataFrame(pca.transform(synth_data_reduced)) data_reduced = np.concatenate((stock_data_reduced, synth_data_reduced), axis=0) tsne_results = pd.DataFrame(tsne.fit_transform(data_reduced)) fig = plt.figure(constrained_layout=True, figsize=(20,10)) spec = gridspec.GridSpec(ncols=2, nrows=1, figure=fig)
这段代码是用于拟合主成分分析(PCA)和 t-分布随机近邻嵌入(t-SNE)的方法,并将结果可视化出来。
首先,使用`pca.fit()`方法对降维后的真实数据`stock_data_reduced`进行拟合,得到PCA模型。
接下来,使用`pca.transform()`方法将真实数据和合成数据分别转换为PCA的结果。使用`pd.DataFrame()`将转换后的结果转换为DataFrame格式,并分别保存在`pca_real`和`pca_synth`中。
然后,将真实数据和合成数据在降维后的空间中进行拼接,得到`data_reduced`。使用`tsne.fit_transform()`方法对拼接后的数据进行t-SNE降维,得到t-SNE的结果。同样地,使用`pd.DataFrame()`将转换后的结果转换为DataFrame格式,并保存在`tsne_results`中。
最后,创建一个大小为(20,10)的图形窗口,并使用`gridspec.GridSpec()`设置图形的网格布局。在这个例子中,将创建一个1行2列的网格布局。
这段代码的目的是使用PCA和t-SNE对真实数据进行降维,并将结果可视化出来。在可视化中,真实数据和合成数据在降维后的空间中被表示为不同的点集,可以用于比较它们在特征空间中的分布情况。
import os import pandas as pd from openpyxl import load_workbook from openpyxl.utils.dataframe import dataframe_to_rows # 指定要合并的文件夹路径 folder_path = r"E:\aaaa\aaaa" fields_to_write = ['aaaa', 'aaaa'] # 获取文件夹中所有的 xlsx 文件路径 xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')] # 创建一个空的 DataFrame 用于存储合并后的数据 merged_data = pd.DataFrame() # 循环读取每个 xlsx 文件,将它们合并到 merged_data 中 for xlsx_file in xlsx_files: # 使用 pandas 读取 xlsx 文件,并清理无效字符引用 wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False) for sheet_name in wb.sheetnames: ws = wb[sheet_name] for row in ws.rows: for cell in row: cell.value = cell.value if cell.value is None else str(cell.value).strip() df = pd.read_excel(wb) # 将读取到的数据追加到 merged_data 中 merged_data = merged_data.append(df, ignore_index=True) # 在 merged_data 中添加新的一列数据 merged_data['new_column'] = 'new_value' # 创建一个新的工作簿 wb_new = load_workbook(write_only=True) ws_new = wb_new.create_sheet('merged_data') # 将 DataFrame 中的数据逐行写入到新的工作簿中 rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False) for row in rows: ws_new.append(row) # 保存合并后的数据到新的 xlsx 文件中 wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")使用此代码会出现ValueError: Invalid file path or buffer object type: <class 'openpyxl.workbook.workbook.Workbook'>的报错,请优化下
根据报错信息,我猜测可能是在 `pd.read_excel(wb)` 这一行代码中出现了问题。`pd.read_excel()` 方法中的参数应该是文件路径或文件对象,而不是工作簿对象。因此,你可以先将工作簿保存为文件,然后再使用 `pd.read_excel()` 方法读取文件中的内容。修改后的代码如下:
```python
import os
import pandas as pd
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows
# 指定要合并的文件夹路径
folder_path = r"E:\aaaa\aaaa"
fields_to_write = ['aaaa', 'aaaa']
# 获取文件夹中所有的 xlsx 文件路径
xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')]
# 创建一个空的 DataFrame 用于存储合并后的数据
merged_data = pd.DataFrame()
# 循环读取每个 xlsx 文件,将它们合并到 merged_data 中
for xlsx_file in xlsx_files:
# 使用 pandas 读取 xlsx 文件,并清理无效字符引用
wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False)
for sheet_name in wb.sheetnames:
ws = wb[sheet_name]
for row in ws.rows:
for cell in row:
cell.value = cell.value if cell.value is None else str(cell.value).strip()
# 将工作簿保存为临时文件
temp_file = f"{os.path.splitext(xlsx_file)[0]}_temp.xlsx"
wb.save(temp_file)
# 读取临时文件中的数据
df = pd.read_excel(temp_file)
# 删除临时文件
os.remove(temp_file)
# 将读取到的数据追加到 merged_data 中
merged_data = merged_data.append(df, ignore_index=True)
# 在 merged_data 中添加新的一列数据
merged_data['new_column'] = 'new_value'
# 创建一个新的工作簿
wb_new = load_workbook(write_only=True)
ws_new = wb_new.create_sheet('merged_data')
# 将 DataFrame 中的数据逐行写入到新的工作簿中
rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False)
for row in rows:
ws_new.append(row)
# 保存合并后的数据到新的 xlsx 文件中
wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")
```
这样修改后,你应该就可以成功合并文件并保存为新的 xlsx 文件了。
阅读全文