resnet101 语义分割代码
时间: 2023-08-29 17:12:20 浏览: 134
以下是基于PyTorch框架的ResNet101语义分割代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义ResNet101网络结构
class ResNet101(nn.Module):
def __init__(self, num_classes):
super(ResNet101, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 23, stride=2)
self.layer4 = self._make_layer(512, 3, stride=1)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 4, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * 4, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * 4),
)
layers = []
layers.append(Bottleneck(self.inplanes, planes, stride, downsample))
self.inplanes = planes * 4
for i in range(1, blocks):
layers.append(Bottleneck(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 定义ResNet101中的Bottleneck结构
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
# 定义语义分割网络
class SegmentationNet(nn.Module):
def __init__(self, num_classes):
super(SegmentationNet, self).__init__()
self.resnet101 = ResNet101(num_classes)
self.conv1 = nn.Conv2d(2048, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.conv2 = nn.Conv2d(512, num_classes, kernel_size=1, stride=1, bias=False)
def forward(self, x):
x = self.resnet101(x)
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.interpolate(x, scale_factor=8, mode='bilinear', align_corners=True)
return x
```
以上代码实现了ResNet101的网络结构和语义分割网络结构,其中`ResNet101`类实现了ResNet101的基本结构,`Bottleneck`类实现了ResNet101中的Bottleneck结构,`SegmentationNet`类实现了语义分割网络。在`SegmentationNet`中,首先使用ResNet101提取图像特征,然后通过一个卷积层和一个反卷积层将特征图恢复到原图大小,并输出分割结果。
阅读全文