建立1000句句子,每个句子10个单词,每个单词用100的特征维度描述,用pytorch中rnn模型,设置batch_size=10
时间: 2024-03-20 13:39:54 浏览: 66
PytorchRnnLM:在PyTorch中使用RNN的语言模型
好的,我可以帮你建立这些句子,并使用PyTorch中的RNN模型进行训练。以下是我编写的Python代码:
```python
import torch
import torch.nn as nn
import numpy as np
# 定义句子数量和每个句子的长度和单词特征维度
num_sentences = 1000
sentence_length = 10
word_features = 100
# 生成随机句子和特征
sentences = np.random.randn(num_sentences, sentence_length, word_features)
# 将数据转换为PyTorch张量
sentences_tensor = torch.from_numpy(sentences).float()
# 定义RNN模型
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.hidden_size)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
# 定义模型参数
input_size = word_features
hidden_size = 64
output_size = 1
# 实例化模型并定义损失函数和优化器
model = RNNModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# 定义批大小和训练轮数
batch_size = 10
num_epochs = 100
# 循环训练模型
for epoch in range(num_epochs):
for i in range(0, num_sentences, batch_size):
# 获取当前批次的句子和标签
batch_sentences = sentences_tensor[i:i+batch_size]
labels = torch.randn(batch_size, output_size)
# 将句子输入模型并计算损失
outputs = model(batch_sentences)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印当前轮次的损失
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
```
运行这段代码,将生成1000个由随机单词构成的句子,并使用RNN模型对其进行训练。每个句子有10个单词,每个单词用100维特征描述,并将批大小设置为10,以加快训练速度。模型将使用MSE损失函数和Adam优化器进行训练,总共训练100个轮次。每个轮次结束后,将打印出当前轮次的损失。
阅读全文