用原论文方法和Pytorch写SDNE代码。
时间: 2023-02-09 16:31:57 浏览: 179
SDNE(Structure Deep Network Embedding)是一种用于学习图中节点的嵌入表示的方法。它通过将图结构信息与节点的特征信息结合起来,来获得更好的节点嵌入。具体来说,SDNE使用一个卷积神经网络来学习图结构,并使用一个多层感知机来学习节点的特征。
下面是使用原论文方法和 PyTorch 实现 SDNE 的示例代码:
```python
import torch
import torch.nn as nn
class SDNE(nn.Module):
def __init__(self, num_nodes, num_features, hidden_size, alpha, beta):
super(SDNE, self).__init__()
self.num_nodes = num_nodes
self.num_features = num_features
self.hidden_size = hidden_size
self.alpha = alpha
self.beta = beta
# 编码器部分
self.conv1 = nn.Conv2d(1, hidden_size, (num_features, 1))
self.conv2 = nn.Conv2d(1, hidden_size, (1, hidden_size))
self.conv3 = nn.Conv2d(1, hidden_size, (1, hidden_size))
# 解码器部分
self.deconv1 = nn.ConvTranspose2d(hidden_size, hidden_size, (1, hidden_size))
self.deconv2 = nn.ConvTranspose2d(hidden_size, hidden_size, (1, hidden_size))
self.deconv3 = nn.ConvTranspose2d(hidden_size, 1, (num_features, 1))
# 特征编码器
self.feature_encoder = nn.Linear(num_features, hidden_size)
# 特征解码器
self.feature_decoder = nn.Linear(hidden_size, num_features)
def forward(self, adj_matrix, node_features):
# 对邻接矩阵进行自图卷积
hidden = self.conv1(adj_matrix)
hidden = self.conv2(hidden)
hidden = self.
阅读全文