输入格式 第一行包含一个整数 NN,表示计算器所支持的变进制数的长度。 第二行包含 NN 个整数 x_1,x_2,\ldots,x_Nx 1 ,x 2 ,…,x N ,表示第 1\sim n1∼n 位的进制(从最高位到最低位)。 第三行包含 NN 个整数 A_1,A_2,\ldots,A_NA 1 ,A 2 ,…,A N ,表示第一个运算数。 第四行包含一个字符 opop,表示需要实现的运算类型。 第五行包含 NN 个整数 B_1,B_2,\ldots,B_NB 1 ,B 2 ,…,B N ,表示第二个运算数。 输出格式 若 opop 为 +,则输出 (A+B)\bmod(M+1)(A+B)mod(M+1) 的值,否则输出 (A-B)\bmod(M+1)(A−B)mod(M+1) 的值,每一位之间用一个空格隔开,注意高位补零,最高位之前和最低位之后不要有空格。用java解答
时间: 2023-02-06 21:26:10 浏览: 202
下面是一个示例 Java 代码,实现上述所描述的功能:
```
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] m = new int[n];
for (int i = 0; i < n; i++) {
m[i] = sc.nextInt();
}
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
char op = sc.next().charAt(0);
int[] b = new int[n];
for (int i = 0; i < n; i++) {
b[i] = sc.nextInt();
}
int[] c = new int[n];
if (op == '+') {
// 计算 (a + b) mod m[0]
int carry = 0;
for (int i = n - 1; i >= 0; i--) {
int sum = a[i] + b[i] + carry;
c[i] = sum % m[0];
carry = sum / m[0];
}
} else {
// 计算 (a - b) mod m[0]
int borrow = 0;
for (int i = n - 1; i >= 0; i--) {
int diff = a[i] - b[i] - borrow;
if (diff < 0) {
diff += m[0];
borrow = 1;
} else {
borrow = 0;
}
c[i] = diff;
}
}
// 输出结果
for (int i = 0; i < n; i++) {
System.out.print(c[i] + " ");
}
System.out.println();
}
}
```
在这里,我们使用了一个数组 m 来存储每一位的进制,数组 a 和 b 分别存储两个运算数,数组 c 存储结果。对于加法,我们按照从低位到高位的顺序依次计算,并使用一个 carry 变量来记录进位情况;对于减法,我们同样按照从低位到高位的顺序
阅读全文