rsa-crt算法高效率,多注释,带时间记录,图形化交互的尽可能精简的py语言实现代码
时间: 2023-02-06 15:28:42 浏览: 220
下面是 RSA-CRT 算法的 Python 实现代码,带有详细的注释和时间记录:
```python
import time
def rsa_crt(c, d, p, q):
# 计算模p的逆元
def modinv(a, m):
g, x, y = extended_gcd(a, m)
if g != 1:
raise Exception('No modular inverse')
return x % m
# 扩展欧几里得算法
def extended_gcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = extended_gcd(b % a, a)
return (g, x - (b // a) * y, y)
# 计算模p的幂
def modpow(base, exponent, modulus):
result = 1
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % modulus
exponent = exponent >> 1
base = (base * base) % modulus
return result
# 计算模q的幂
def modpowq(base, exponent, modulus):
result = 1
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % modulus
exponent = exponent >> 1
base = (base * base) % modulus
return result
# 开始计时
start = time.time()
# 计算中国剩余定理
mp = modpow(c, d, p)
mq = modpowq(c, d, q)
qinv = modinv(q, p)
m = (mp * q * qinv + mq * p * modinv(p, q)) % (p * q)
# 结束计时
end = time.time()
# 返回结果和计算时间
return (m, end-start)
# 测试代码
c = 1234567890
d = 9876543210
p = 1234987650
q = 1235678980
result, elapsed_time = rsa_crt(c, d, p, q)
print("Result:", result)
print("Time elapsed:", elapsed_time)
```
在这段代码中,我们使用了扩展欧几里得算法来计算模p的逆元,并使用两个函数分别计算模p
阅读全文