cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'rectangle' > Overload resolution failed: > - Can't parse 'pt1'. Sequence item with index 0 has a wrong type > - Can't parse 'pt1'. Sequence item with index 0 has a wrong type > - Can't parse 'rec'. Expected sequence length 4, got 2 > - Can't parse 'rec'. Expected sequence length 4, got 2
时间: 2024-01-29 09:02:52 浏览: 432
这个错误通常是由于矩形框的坐标没有被正确指定而导致的。在OpenCV中,矩形框的坐标通常是以左上角和右下角的坐标或者左上角的坐标和矩形框的宽度和高度来指定的。
以下是一些可能导致这个错误的常见问题和解决方法:
1. 矩形框的坐标被错误地指定为浮点数而不是整数。请确保矩形框的坐标是整数。
```python
x0, y0 = int(100), int(100)
x1, y1 = int(200), int(200)
```
2. 矩形框的坐标被错误地指定为一个包含坐标的元组,而不是两个分开的参数。请将坐标分开为两个参数。
```python
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 0, 255), 2)
```
3. 矩形框的坐标被错误地指定为一个包含两个元素的元组,而不是一个包含四个元素的元组。请确保矩形框的坐标是一个包含四个元素的元组。
```python
cv2.rectangle(img, (x0, y0, x1, y1), (0, 0, 255), 2)
```
如果以上方法都无法解决问题,可以尝试打印出矩形框的坐标,以便进一步调试和诊断错误。
相关问题
cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'boundingRect' > Overload resolution failed: > - array is not a numerical tuple > - Expected Ptr<cv::UMat> for argument 'array'
这个错误通常是由于cv2.findContours()函数返回的轮廓列表为空,导致cv2.boundingRect()函数无法计算边界框而引起的。请确保在调用cv2.findContours()函数之前,使用cv2.threshold()或其他图像分割方法,将图像转换为二进制形式。另外,还需要确保使用的图像是正确的类型(例如,8位或32位浮点数),以及使用正确的数组格式(例如,numpy数组或OpenCV的UMat)。以下是一个更新后的示例代码:
```
import cv2
import numpy as np
# 读取图像并转换为HSV颜色空间
img = cv2.imread('image.jpg')
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 定义红色的HSV范围
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
mask = cv2.bitwise_or(mask1, mask2)
# 将图像转换为二进制形式
_, binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
# 查找红色矩形的轮廓并确定其边界框
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:
x, y, w, h = cv2.boundingRect(contours[0])
# 将矩形分成4个子矩形
sub_w = int(w / 2)
sub_h = int(h / 2)
centers = [(x + sub_w, y + sub_h), (x + sub_w, y + 3 * sub_h), (x + 3 * sub_w, y + sub_h), (x + 3 * sub_w, y + 3 * sub_h)]
# 绘制子矩形
for center in centers:
x, y = center
cv2.rectangle(img, (x - sub_w, y - sub_h), (x + sub_w, y + sub_h), (0, 255, 0), 2)
# 显示结果图像
cv2.imshow('Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print('未找到红色矩形!')
```
如果问题仍然存在,请检查输入图像的位置和格式是否正确,并尝试使用不同的阈值或分割方法来处理图像。
cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'resize' > Overload resolution failed: > - src data type = 17 is not supported > - Expected Ptr<cv::UMat> for argument 'src'
这个错误是由于OpenCV中的resize函数无法处理输入图像的数据类型所导致的。这个错误信息中提到了输入图像的数据类型为17,这表示输入图像的数据类型不被支持。您需要确保输入图像的数据类型是OpenCV支持的类型之一,例如CV_8UC1、CV_8UC3或CV_32FC1等。您还需要检查您的代码是否正确地将输入图像传递给resize函数,并且输入图像的宽度和高度是否符合函数的要求。如果您仍然无法解决问题,请提供更多的代码和上下文,以便更好地理解问题。
阅读全文
相关推荐














