交叉熵损失函数是什么?
时间: 2023-11-02 20:07:04 浏览: 87
交叉熵损失函数python实现源码
交叉熵损失函数(Cross-Entropy Loss Function)是深度学习中经常使用的一种损失函数,用于衡量分类问题中预测分布与真实分布之间的差异。在分类问题中,我们通常会将数据分为不同的类别,例如图像分类问题中,我们可能需要将图像分为不同的类别,如猫、狗、鸟等。我们希望模型能够准确地预测每个样本属于每个类别的概率分布,因此交叉熵损失函数可以用来衡量模型预测的概率分布与真实分布之间的差异。其数学表达式为:
$$
\text{Cross-Entropy Loss} = -\sum_{i=1}^{n} y_i \log(p_i)
$$
其中,$n$ 表示类别的数量,$y_i$ 表示第 $i$ 个类别的真实标签,$p_i$ 表示模型预测为第 $i$ 个类别的概率。交叉熵损失函数越小,表示模型预测的概率分布越接近真实分布,因此我们希望通过优化模型的参数,使得交叉熵损失函数最小化。
阅读全文