交叉熵损失函数有几种?分类交叉熵损失函数就是交叉熵损失函数吗
时间: 2024-04-29 13:18:18 浏览: 356
监督学习中的损失函数及应用研究
交叉熵损失函数是一种常用的损函数,主要用于衡量分类问题中预测值与真实值之间的差异。在分类任务中,交叉熵损失函数可以用来度量预测概率分布与真实标签之间的差异。
在分类问题中,常见的交叉熵损失函数有两种形式:二分类交叉熵损失函数和多分类交叉熵损失函数。
1. 二分类交叉熵损失函数(Binary Cross Entropy Loss):适用于二分类问题,其中每个样本只有两个可能的类别。它的计算公式如下:
L = -[y * log(p) + (1-y) * log(1-p)]
其中,y表示真实标签(0或1),p表示预测的概率值。
2. 多分类交叉熵损失函数(Categorical Cross Entropy Loss):适用于多分类问题,其中每个样本有多个可能的类别。它的计算公式如下:
L = -Σ[y * log(p)]
其中,y表示真实标签的one-hot编码形式,p表示预测的概率分布。
需要注意的是,分类交叉熵损失函数是指多分类交叉熵损失函数,因为它适用于多分类问题。而二分类交叉熵损失函数只适用于二分类问题。
阅读全文