TCGA 数据下载及处理R语言脚本
时间: 2023-12-07 16:02:47 浏览: 170
以下是TCGA数据下载及处理的R语言脚本:
首先,需要安装以下R包:TCGAbiolinks,tidyverse,ggplot2,survival,survminer。
```R
# 安装TCGAbiolinks包
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("TCGAbiolinks")
# 安装其他必要的包
install.packages(c("tidyverse", "ggplot2", "survival", "survminer"))
```
接下来,下载TCGA数据。例如,我们下载肺癌(LUSC)的RNA-seq和临床数据。
```R
library(TCGAbiolinks)
# Set working directory
setwd("your_working_directory")
# Download RNA-seq data
query <- GDCquery(project = "TCGA-LUSC",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "HTSeq - FPKM",
legacy = TRUE,
platform = "Illumina HiSeq",
file.type = "results",
experimental.strategy = "RNA-Seq")
GDCdownload(query)
# Download clinical data
query <- GDCquery(project = "TCGA-LUSC",
data.category = "Clinical",
file.type = "xml")
GDCdownload(query)
```
接下来,我们可以将下载的RNA-seq数据导入到R中,并进行预处理。例如,我们可以通过log2转换标准化数据并删除低表达基因。
```R
# Load RNA-seq data
LUSC_rnaseq <- GDCprepare(query, save = TRUE, save.filename = "LUSC_rnaseq")
# Log2 transformation and normalization
LUSC_rnaseq$log2 <- log2(LUSC_rnaseq$counts+1)
LUSC_rnaseq_norm <- normalizeBetweenArrays(LUSC_rnaseq$log2, method = "quantile")
# Remove low expressed genes
LUSC_rnaseq_norm_filter <- LUSC_rnaseq_norm[rowSums(LUSC_rnaseq_norm > 1) >= 20,]
```
最后,我们可以使用survival和survminer包对临床数据进行生存分析和可视化。
```R
# Load clinical data
LUSC_clinical <- GDCprepare_clinic(query, clinical.info = "patient")
# Merge RNA-seq and clinical data
LUSC_data <- merge(LUSC_rnaseq_norm_filter, LUSC_clinical, by = "bcr_patient_barcode")
# Survival analysis
fit <- survfit(Surv(time, vital_status) ~ 1, data = LUSC_data)
ggsurvplot(fit, data = LUSC_data, pval = TRUE, conf.int = TRUE)
# Cox proportional hazards model
model <- coxph(Surv(time, vital_status) ~ gene1 + gene2 + gene3, data = LUSC_data)
summary(model)
```
阅读全文