mask = F.one_hot(torch.from_numpy(mask).type(torch.int64), self.n_classes) TypeError: expected np.ndarray (got Tensor)
时间: 2024-02-22 17:59:21 浏览: 184
one hot编码:`torch.Tensor.scatter_()`函数用法详解
非常抱歉,我的前一条回答中有误。在PyTorch中,`F.one_hot()`函数的输入参数应该是PyTorch张量,而不是NumPy数组。因此,在将NumPy数组转换为PyTorch张量之后,可以直接将其作为`F.one_hot()`函数的输入。在本例中,您可以按照以下方式修改代码:
```
if self.onehot_y:
mask = mask if mask.ndim < 4 else mask.squeeze(dim=1)
mask = F.one_hot(torch.from_numpy(mask).type(torch.int64), self.n_classes)
mask = mask.transpose(0, 3, 1, 2)
```
修改后的代码中,我们首先将NumPy数组`mask`转换为PyTorch张量,并使用`type()`方法将其转换为`torch.int64`类型的张量。然后,我们直接将处理后的`mask`张量作为`F.one_hot()`函数的输入,并使用`transpose()`函数将处理后的`mask`张量的维度按照指定的顺序重排,即将批次大小(如果有的话)移动到第0个维度的位置,将通道数移动到第1个维度的位置,将高度移动到第2个维度的位置,将宽度移动到第3个维度的位置。
阅读全文