带颜色恢复的多尺度Retinex算法(MSRCR)的优缺点
时间: 2023-04-05 10:04:12 浏览: 282
C知道:多尺度Retinex算法(MSRCR)是一种用于图像增强的算法,其优点包括能够有效地去除图像中的噪声和增强图像的细节,同时保持图像的自然感觉。缺点包括在处理大型图像时需要较长的计算时间,同时可能会导致图像的过度增强或失真。
相关问题
带色彩恢复因子的多尺度Retinex算法图像亮度增强代码
以下是带色彩恢复因子的多尺度Retinex算法图像亮度增强的Python代码:
```python
import cv2
import numpy as np
def MSR(image, scales):
weight = np.zeros_like(image)
for scale in scales:
blur = cv2.GaussianBlur(image, (0, 0), scale * 0.1)
diff = cv2.absdiff(image, blur)
diff = cv2.GaussianBlur(diff, (0, 0), scale * 0.1)
weight += diff
weight = (weight / len(scales)) + 1.0
result = np.zeros_like(image)
for i in range(3):
result[:, :, i] = np.maximum(np.minimum((image[:, :, i] - weight[:, :, i] + 1.0) * 255.0, 255.0), 0.0)
return result
def MSRCR(image, scales, radius, gamma):
scales_1 = [0.25, 0.5, 1.0, 2.0, 4.0]
scales_2 = [0.5, 1.0, 2.0, 4.0, 8.0]
weights = []
for scale in scales_2:
weight = np.zeros_like(image)
for radius in range(1, 6):
weight += MSR(image, [scale]) * (gamma ** radius)
weights.append(weight)
weight = np.zeros_like(image)
for i in range(3):
weight[:, :, i] = np.mean([weight[:, :, i] for weight in weights], axis=0)
weight = cv2.GaussianBlur(weight, (radius, radius), 0)
result = np.zeros_like(image)
for i in range(3):
result[:, :, i] = np.maximum(np.minimum((image[:, :, i] - weight[:, :, i] + 1.0) * 255.0, 255.0), 0.0)
return result
# 读取原始图像
image = cv2.imread("test.jpg")
# 调用MSRCR函数进行图像亮度增强
result = MSRCR(image, scales=[1.0], radius=15, gamma=1.0)
# 显示增强后的图像
cv2.imshow("Enhanced", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,`MSR`函数为多尺度Retinex算法,`MSRCR`函数为带色彩恢复因子的多尺度Retinex算法。在`MSR`函数中,`image`参数为原始图像,`scales`参数为用于计算权重的高斯核尺度列表。在`MSRCR`函数中,`image`参数为原始图像,`scales`参数为用于计算权重的高斯核尺度列表,`radius`参数为色彩恢复因子的高斯核半径,`gamma`参数为色彩恢复因子的衰减系数。最终,`result`为增强后的图像。
多尺度Retinex算法代码
以下是一个基于Python的多尺度Retinex算法的代码示例:
```python
import cv2
import numpy as np
def msr(image, sigma_list):
# 将图像转换为灰度图像
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 初始化输出图像
output = np.zeros_like(image)
# 对每个尺度进行处理
for sigma in sigma_list:
# 计算高斯滤波器的大小
ksize = int(2 * np.ceil(3 * sigma) + 1)
# 对图像进行高斯滤波
image_blur = cv2.GaussianBlur(image_gray, (ksize, ksize), sigma)
# 计算Retinex增益
gain = np.log10(image_gray + 1) - np.log10(image_blur + 1)
# 对增益进行限制
gain[gain < 0] = 0
# 计算Retinex输出
output[:, :, 0] += cv2.GaussianBlur(gain * image[:, :, 0], (ksize, ksize), sigma)
output[:, :, 1] += cv2.GaussianBlur(gain * image[:, :, 1], (ksize, ksize), sigma)
output[:, :, 2] += cv2.GaussianBlur(gain * image[:, :, 2], (ksize, ksize), sigma)
# 对输出进行限制
output = np.clip(output, 0, 255)
# 将图像转换回BGR格式
output = cv2.cvtColor(output.astype(np.uint8), cv2.COLOR_BGR2RGB)
return output
```
其中,`image`是输入图像,`sigma_list`是一个包含不同尺度高斯滤波器标准差的列表。函数返回一个多尺度Retinex增益的输出图像。可以调整`sigma_list`中的标准差值来控制算法的效果。
阅读全文
相关推荐














