翻译代码 if (_m_mInputMat.empty()) { return; } if (_m_mInputMat.channels() > 1) { cvtColor(_m_mInputMat, _m_mInputMat, COLOR_BGR2GRAY); } Mat RotateMat = getRotationMatrix2D(_m_pdCenter, -_m_dAngle, 1); warpAffine(_m_mInputMat, _m_mInputMat, RotateMat, _m_mInputMat.size(), WARP_INVERSE_MAP | INTER_CUBIC); Mat newCenter = RotateMat * (Mat_<double>(3, 1) << _m_pdCenter.x, _m_pdCenter.y, 1); double x = newCenter.at<double>(0, 0); double y = newCenter.at<double>(1, 0); Mat M = (Mat_<double>(2, 3) << 1, 0, x - _m_dLength * 0.5, 0, 1, y - _m_dHeight * 0.5); warpAffine(_m_mInputMat, _m_mInputMat, M, Size2d(_m_dLength, _m_dHeight), WARP_INVERSE_MAP | INTER_CUBIC);

时间: 2024-04-23 07:24:17 浏览: 18
这是一段OpenCV的C++代码。该代码首先判断输入的图像是否为空,如果是空的,则直接返回。接着,如果输入的图像通道数大于1,则将其转换为灰度图像。然后,通过getRotationMatrix2D函数得到一个旋转矩阵,将其作用于输入图像,得到一个旋转后的图像。接下来,计算出旋转后的图像的中心点,并根据中心点、长度和宽度得到一个仿射变换矩阵。最后,将该仿射变换矩阵作用于旋转后的图像,得到一个大小为指定长度和宽度的图像。
相关问题

void Extract1DEdge::GetProfieMat() { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } Mat RotateMat = getRotationMatrix2D(m_pdCenter, -m_dAngle, 1); warpAffine(m_mInputMat, m_mInputMat, RotateMat, m_mInputMat.size(), WARP_INVERSE_MAP); Mat newCenter = RotateMat * (Mat_<double>(3, 1) << m_pdCenter.x, m_pdCenter.y, 1); double x = newCenter.at<double>(0, 0); double y = newCenter.at<double>(1, 0); Mat M = (Mat_<double>(2, 3) << 1, 0, x - m_dLength * 0.5, 0, 1, y - m_dHeight * 0.5); warpAffine(m_mInputMat, m_mInputMat, M, Size2d(m_dLength, m_dHeight), WARP_INVERSE_MAP); }如何保持效果不变的情况下加速这段代码给个例程

可以尝试使用多线程来加速这段代码。具体可以将图像切分成多个小块,每个小块分配一个线程来处理,最后将小块合并成完整的图像。这样可以利用多核CPU的优势,提高代码的运行效率。以下是伪代码示例: ``` void Extract1DEdge::GetProfieMat() { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } Mat RotateMat = getRotationMatrix2D(m_pdCenter, -m_dAngle, 1); warpAffine(m_mInputMat, m_mInputMat, RotateMat, m_mInputMat.size(), WARP_INVERSE_MAP); Mat newCenter = RotateMat * (Mat_<double>(3, 1) << m_pdCenter.x, m_pdCenter.y, 1); double x = newCenter.at<double>(0, 0); double y = newCenter.at<double>(1, 0); Mat M = (Mat_<double>(2, 3) << 1, 0, x - m_dLength * 0.5, 0, 1, y - m_dHeight * 0.5); // 切分图像 vector<Mat> subMats; const int numThreads = 4; // 可以根据实际情况调整线程数量 const int rowsPerThread = m_mInputMat.rows / numThreads; for (int i = 0; i < numThreads; i++) { int startRow = i * rowsPerThread; int endRow = (i == numThreads - 1) ? m_mInputMat.rows : (startRow + rowsPerThread); Mat subMat = m_mInputMat.rowRange(startRow, endRow); subMats.push_back(subMat); } // 多线程处理 vector<thread> threads; for (int i = 0; i < numThreads; i++) { threads.push_back(thread([&, i]() { Mat subMat = subMats[i]; warpAffine(subMat, subMat, M, Size2d(m_dLength, m_dHeight), WARP_INVERSE_MAP); })); } for (auto& t : threads) { t.join(); } // 合并图像 for (int i = 1; i < numThreads; i++) { Mat subMat = subMats[i]; subMat.copyTo(m_mInputMat.rowRange(i * rowsPerThread, (i == numThreads - 1) ? m_mInputMat.rows : ((i + 1) * rowsPerThread))); } } ``` 需要注意的是,多线程处理图像时需要注意线程安全,避免多个线程同时访问同一块内存区域。在上述示例中,使用了引用捕获方式来访问外部变量。此外,也可以使用互斥锁或其他线程同步机制来保证线程安全。

void Extract1DEdgeCircle::GetProfieMat() { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } //Get ROI mat. RotatedRect rMaskRegion(m_pdCenter, Size2f(GetPPDistance(m_pdStart, m_pdEnd) + 10, m_dLength + 10), m_dAngle); Point2f rRegionPoints[4]; rMaskRegion.points(rRegionPoints); Mat mask = Mat::zeros(m_mInputMat.size(), CV_8UC1); Point ppt[] = { rRegionPoints[0], rRegionPoints[1], rRegionPoints[2], rRegionPoints[3] }; const Point* pts[] = { ppt }; int npt[] = { 4 }; fillPoly(mask, pts, npt, 1, Scalar::all(255), 8); Mat RoiMat = Mat::zeros(m_mInputMat.size(), m_mInputMat.type()); bitwise_and(m_mInputMat, m_mInputMat, RoiMat, mask); Mat RotateMat = getRotationMatrix2D(m_pdCenter, -m_dAngle, 1); warpAffine(RoiMat, RoiMat, RotateMat, m_mInputMat.size(), WARP_INVERSE_MAP); Mat newCenter = RotateMat * (Mat_<double>(3, 1) << m_pdCenter.x, m_pdCenter.y, 1); double x = newCenter.at<double>(0, 0); double y = newCenter.at<double>(1, 0); Mat M = (Mat_<double>(2, 3) << 1, 0, x - m_dLength * 0.5, 0, 1, y - m_dHeight * 0.5); warpAffine(RoiMat, m_mInputMat, M, Size2d(m_dLength, m_dHeight), WARP_INVERSE_MAP); }这段代码如何使用AVX2指令集加速

To use AVX2 instructions to accelerate this code, we need to identify the parts of the code that can be parallelized and vectorized. One potential candidate is the image warping operations (i.e., `warpAffine` function calls). To use AVX2 instructions, we need to use the `cv::parallel_for_` function to parallelize the loop that applies the warping operations to each pixel in the image. Next, we need to vectorize the code inside the loop using AVX2 instructions. We can use the `cv::v_load` function to load 8 consecutive pixels (assuming a 8-byte data type) into an AVX2 register, and the `cv::v_gather` function to gather non-consecutive pixels into an AVX2 register. We can then perform the necessary arithmetic operations using AVX2 instructions and store the results back to memory using the `cv::v_store` function. Here is an example of how the code inside the loop can be vectorized using AVX2 instructions: ```cpp __m256i vindex = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); for (int i = 0; i < src.rows; i++) { uchar* src_ptr = src.ptr<uchar>(i); uchar* dst_ptr = dst.ptr<uchar>(i); for (int j = 0; j < src.cols; j += 8) { __m256i vsrc = cv::v_load(src_ptr + j); __m256i vx = _mm256_add_epi32(_mm256_mul_epu32(_mm256_cvtepu8_epi32(vindex), vx_step), vx_offset); __m256i vy = _mm256_add_epi32(_mm256_mul_epu32(_mm256_cvtepu8_epi32(vindex), vy_step), vy_offset); __m256i vx_lo = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vx, 0)); __m256i vx_hi = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vx, 1)); __m256i vy_lo = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vy, 0)); __m256i vy_hi = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vy, 1)); __m256i vx_lo_32 = _mm256_cvtepi64_epi32(vx_lo); __m256i vx_hi_32 = _mm256_cvtepi64_epi32(vx_hi); __m256i vy_lo_32 = _mm256_cvtepi64_epi32(vy_lo); __m256i vy_hi_32 = _mm256_cvtepi64_epi32(vy_hi); __m256i vsrc00 = cv::v_gather(src_ptr, src_step, vx_lo_32, vy_lo_32, _mm256_setzero_si256(), 1); __m256i vsrc01 = cv::v_gather(src_ptr, src_step, vx_hi_32, vy_lo_32, _mm256_setzero_si256(), 1); __m256i vsrc10 = cv::v_gather(src_ptr, src_step, vx_lo_32, vy_hi_32, _mm256_setzero_si256(), 1); __m256i vsrc11 = cv::v_gather(src_ptr, src_step, vx_hi_32, vy_hi_32, _mm256_setzero_si256(), 1); __m256i vsrc0 = _mm256_packs_epi32(vsrc00, vsrc01); __m256i vsrc1 = _mm256_packs_epi32(vsrc10, vsrc11); __m256i vsrc = _mm256_packus_epi16(vsrc0, vsrc1); cv::v_store(dst_ptr + j, vsrc); } } ``` Note that this is just an example, and the actual implementation may depend on the specifics of the code and the hardware platform.

相关推荐

void Extract1DEdge::GetEdgePoint(int threshold, Translation traslation, Selection selection) { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } double* ptr = m_mInputMat.ptr<double>(0); m_vpCandidate.clear(); m_vEdgesResult.clear(); //The theshold condition is met for (int i = 0; i < m_mInputMat.cols; i++) { double dGradient = abs(ptr[i]); if (dGradient >= threshold) { m_vpCandidate.push_back(Point2d(i, ptr[i])); } } if (m_vpCandidate.size() == 0) { return; } //The translation condition is met if (traslation == Translation::Poisitive)// from dark to light: f'(x)>0 { for (vector::iterator iter = m_vpCandidate.begin(); iter != m_vpCandidate.end();) { if ((*iter).y <= 0) { //cout << "Negative Edge: " << (*iter).y << endl; iter = m_vpCandidate.erase(iter); } else { iter++; } } } else if (traslation == Translation::Negative) { for (vector::iterator iter = m_vpCandidate.begin(); iter != m_vpCandidate.end();) { if ((*iter).y > 0) { iter = m_vpCandidate.erase(iter); } else { iter++; } } } if (m_vpCandidate.size() == 0) { return; } //The selection condition is met if (selection == Selection::Fisrt) { m_vpCandidate.erase(m_vpCandidate.begin() + 1, m_vpCandidate.end()); } else if (selection == Selection::Last) { m_vpCandidate.erase(m_vpCandidate.begin(), m_vpCandidate.end() - 1); } else if (selection == Selection::Strongest) { Point2d pdMax(0, 0); double dGradientMax = 0; for(Point2d item: m_vpCandidate) { if (abs(item.y) >= dGradientMax) { pdMax = item; dGradientMax = abs(item.y); } } m_vpCandidate.clear(); m_vpCandidate.push_back(pdMax); } else if (selection == Selection::weakest) { Point2d pdMin(0, 99999999); for (Point2d item : m_vpCandidate) { if (abs(item.y) <= pdMin.y) { pdMin.y = abs(item.y); pdMin.x = item.x; } } m_vpCandidate.clear(); m_vpCandidate.push_back(pdMin); } double dEdgex = 0, dEdgey = 0; for (Point2d item : m_vpCandidate) { if (isinf(m_dK)) { dEdgex = m_pdStart.x; dEdgey = m_pdStart.y + sin(to_radian(m_dAngle)) * item.x; } else { dEdgex = m_pdStart.x + item.x * cos(to_radian(m_dAngle)); dEdgey = m_dK * dEdgex + m_dB; } m_vEdgesResult.push_back(Edge1D_Result(Point2d(dEdgex, dEdgey), item.y)); } } 使用 OpenCvSharp4.6 编写函数 GetEdgePoint(int threshold, Translation traslation, Selection selection)

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通