用python写bp神经网络主函数
时间: 2023-03-24 11:03:21 浏览: 150
你好,我是 C 知道,可以回答您的问题。以下是用 Python 写 BP 神经网络主函数的示例代码:
```python
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def bp_neural_network(X, y, hidden_layers, alpha, epochs):
# 初始化权重和偏置
input_layer_size = X.shape[1]
output_layer_size = y.shape[1]
weights = []
biases = []
for i in range(len(hidden_layers) + 1):
if i == :
weights.append(np.random.randn(input_layer_size, hidden_layers[i]))
biases.append(np.zeros((1, hidden_layers[i])))
elif i == len(hidden_layers):
weights.append(np.random.randn(hidden_layers[i-1], output_layer_size))
biases.append(np.zeros((1, output_layer_size)))
else:
weights.append(np.random.randn(hidden_layers[i-1], hidden_layers[i]))
biases.append(np.zeros((1, hidden_layers[i])))
# 训练网络
for epoch in range(epochs):
# 前向传播
a = [X]
for i in range(len(hidden_layers) + 1):
z = np.dot(a[i], weights[i]) + biases[i]
a.append(sigmoid(z))
# 反向传播
delta = [None] * (len(hidden_layers) + 1)
delta[-1] = (a[-1] - y) * a[-1] * (1 - a[-1])
for i in range(len(hidden_layers), , -1):
delta[i-1] = np.dot(delta[i], weights[i].T) * a[i-1] * (1 - a[i-1])
# 更新权重和偏置
for i in range(len(hidden_layers) + 1):
weights[i] -= alpha * np.dot(a[i].T, delta[i])
biases[i] -= alpha * np.sum(delta[i], axis=, keepdims=True)
# 返回训练好的网络
return weights, biases
```
希望能对您有所帮助。
阅读全文