解释def letterbox(img: np.ndarray, new_shape=(416, 416), color=(114, 114, 114), auto=True, scale_fill=False, scale_up=True):

时间: 2024-02-15 09:28:26 浏览: 123
这是一个 Python 函数,函数名为 `letterbox`。该函数接收五个参数: - `img`:一个 NumPy 数组,代表输入的图像。 - `new_shape`:一个元组,表示将输入的图像缩放到的目标大小。默认值为 `(416, 416)`。 - `color`:一个元组,表示在图像边缘填充时所用的颜色。默认值为 `(114, 114, 114)`。 - `auto`:一个布尔值,表示是否自动调整缩放比例。默认为 `True`。 - `scale_fill`:一个布尔值,表示是否缩放填充。默认为 `False`。 - `scale_up`:一个布尔值,表示是否允许将输入图像放大以适应目标大小。默认为 `True`。 该函数的作用是将输入的图像缩放到指定的目标大小,并在图像边缘填充颜色以保持宽高比不变,即使用 letterbox 技术。如果设置了 `auto` 参数为 `True`,则会自动调整缩放比例以适应目标大小。如果设置了 `scale_fill` 参数为 `True`,则会进行缩放填充。如果设置了 `scale_up` 参数为 `True`,则允许将输入图像放大以适应目标大小。
相关问题

def detect(self, name_list, img): showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) pred = self.model(img, augment=self.opt.augment)[0] pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) info_show = "" for i, det in enumerate(pred): if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], showimg.shape).round() for *xyxy, conf, cls in reversed(det): label = '%s %.2f' % (self.names[int(cls)], conf) name_list.append(self.names[int(cls)]) single_info = plot_one_box2(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) # print(single_info) info_show = info_show + single_info + "\n" return info_show解释代码

这个代码是对输入的图片进行目标检测的,其中包含以下步骤: 1. 将输入的图片进行缩放,使其宽度和高度都等于opt.img_size(一般情况下为416),并将其转换为RGB格式。 2. 将缩放后的图片转换为PyTorch的tensor,并将其从uint8类型转换为fp16或fp32类型,同时将像素值从0-255的范围转换为0.0-1.0的范围。 3. 将tensor的维度变为4维,即增加一个batch维度。 4. 通过调用self.model对图片进行预测,得到预测结果pred。 5. 对pred进行非极大值抑制,去除重复的预测框。 6. 遍历每个预测框,将其坐标进行缩放,使其适应原始图像的大小,并将其类别和置信度添加到name_list中。同时,将每个预测框的坐标和类别信息绘制在原始图像上,并将绘制的信息添加到info_show中。 7. 将info_show返回作为函数的输出结果。

解释一下下面一段代码 def detect(self, name_list, img): showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) pred = self.model(img, augment=self.opt.augment)[0] pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) info_show = "" for i, det in enumerate(pred): if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], showimg.shape).round() for *xyxy, conf, cls in reversed(det): label = '%s %.2f' % (self.names[int(cls)], conf) name_list.append(self.names[int(cls)]) single_info = plot_one_box2(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) # print(single_info) info_show = info_show + single_info + "\n" return info_show

这段代码是一个函数 detect,接受两个参数 name_list 和 img,其中 name_list 是一个列表,img 是一个图像。这个函数的作用是对图像进行目标检测,返回一个字符串 info_show。 在函数内部,首先将原始图像 showimg 赋值给变量 showimg。然后使用 letterbox 函数调整图像大小到指定大小(self.opt.img_size),并进行一些预处理操作,将其转换为 PyTorch 的张量格式。接着使用模型 self.model 对图像进行预测,得到预测结果 pred。 对于每个预测结果 det,将其框的坐标进行还原,然后使用 plot_one_box2 函数在图像上绘制出矩形框和标签,并将标签信息添加到 name_list 中。最终将所有标签信息合并为一个字符串 info_show 并返回。
阅读全文

相关推荐

将以下适用于pt模型的代码改为适用于tflite模型的代码def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # 获取当前图片的长宽 shape = img.shape[:2] # current shape [height, width] # 如果 new_shape 是整数,则将其转换为元组 (new_shape, new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # 缩放比(缩放后的尺寸 / 原始尺寸的最小值) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # 如果不需要放大图片(仅缩小),则将缩放比 r 取最小值为 1.0 if not scaleup: r = min(r, 1.0) # 计算相应需要添加多少行和列的像素值 ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding # 如果 auto 为 True, 则将 padding 取最小的 32 的倍数 if auto: dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding elif scaleFill: # 如果 scaleFill 为 True,则将 padding 设为 0.0 dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 # 如果图片的形状不符合指定大小,则进行缩放和加边框 if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # 返回加了边框的图片,缩放比例和 padding 的行和列的值 return img, ratio, (dw, dh)

def predict(im0s): # 进行推理 img = torch.zeros((1, 3, imgsz, imgsz), device=device) # 初始化img _ = model(img.half() if half else img) if device.type != 'cpu' else None # 运行一次模型 # 设置数据加载器并进行推理 img = letterbox(im0s, new_shape=imgsz)[0] # 对输入图像进行resize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR转RGB, 3x416x416 img = np.ascontiguousarray(img) # 返回具有相同数据和顺序的相同形状数组 img = torch.from_numpy(img).to(device) # 将numpy数组转换为张量并传递到设备上 img = img.half() if half else img.float() # 数据类型转换为float16或float32 img /= 255.0 # 将像素值从0-255映射到0.0-1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # 给张量添加一个额外的纬度,输出新的张量 # 进行推理 pred = model(img)[0] # 应用非极大值抑制 pred = non_max_suppression(pred, opt_conf_thres, opt_iou_thres) # 处理检测结果 ret = [] for i, det in enumerate(pred): # 每张图片有多个检测结果 if len(det): # 将检测框位置从img_size调整到原始图像大小 det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0s.shape).round() # 输出结果 for *xyxy, conf, cls in reversed(det): label = f'{names[int(cls)]}' # 输出结果的标签信息 prob = round(float(conf) * 100, 2) # 置信度转换 ret_i = [label, prob, xyxy] # 将结果存入list ret.append(ret_i) # 返回信息:标签信息 'face' 'smoke' 'drink' 'phone',对应的置信度和位置信息(检测框) return ret

最新推荐

recommend-type

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自动代码生成, 电源建模仿真与控制原理 (1)数字电源的功率模块建模 (2)数字电源的环路补偿器建模 (3)数字电源的仿真和分析 (4)如何把数学控制方程变成硬件C代码; (重点你的想法如何实现)这是重点数字电源硬件资源、软件设计、上机实验调试 (1) DSP硬件资源; (2)DSP的CMD文件与数据的Q格式: (3) DSP的C程序设计; (4)数字电源的软件设计流程 (5)数字电源上机实验和调试(代码采用全中文注释)还有这个,下面来看看都有啥,有视频和对应资料(S代码,对应课件详细讲述传递函数推倒过程。
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵
recommend-type

在使用SQL创建存储过程时,是否可以在定义输入参数时直接为其赋予初始值?

在使用SQL创建存储过程时,通常可以在定义输入参数时为其赋予初始值。这种做法可以使参数具有默认值,当调用存储过程时,如果没有提供该参数的值,则会使用默认值。以下是一个示例: ```sql CREATE PROCEDURE MyProcedure @Param1 INT = 10, @Param2 NVARCHAR(50) = 'DefaultValue' AS BEGIN -- 存储过程的主体 SELECT @Param1 AS Param1, @Param2 AS Param2 END ``` 在这个示例中,`@Param1`和`@Param2`是输入参数
recommend-type

MySQL 5.5.28 64位数据库软件免费下载

资源摘要信息:"mysql 64位.zip" 知识点: 1. MySQL简介: MySQL是一个流行的关系型数据库管理系统(RDBMS),由瑞典MySQL AB公司开发,目前被Oracle公司所拥有。它使用结构化查询语言(SQL)进行数据库管理,是基于客户端-服务器模型的数据库系统,能够处理拥有上千万条记录的大型数据库。 2. MySQL版本: 标题中提到的“mysql 5.5.28版本”指的是MySQL数据库管理系统的一个具体版本。每个版本号由主版本号、次版本号和修订号组成,通常表示该版本在功能、性能以及稳定性等方面相对于前一个版本的改进。在这个案例中,5.5代表主版本号,28代表修订号。 3. 64位版本: "64位"指的是软件运行所需的操作系统和处理器支持的位数。64位系统比32位系统能够处理更大的内存和更复杂的应用程序。因此,如果一个软件提供64位版本,则意味着它可以充分利用64位系统的优势,提高程序运行的效率和稳定性。 4. Windows系统: "Windows系统"指的是微软公司开发的一系列操作系统,其中包括家庭用户广泛使用的Windows XP、Windows 7、Windows 8和Windows 10等。MySQL 5.5.28 64位版本专门为Windows操作系统设计,确保了用户在使用Windows系统时的兼容性和运行效率。 5. 免费开源: MySQL是一个开源软件,遵循GPL(GNU通用公共许可证),这意味着任何人都可以免费下载、使用、修改和重新分发MySQL。开源特性使得MySQL社区活跃,不断有开发者为其贡献代码,增强了MySQL的功能和稳定性。 6. 数据库存储: MySQL的最主要功能是数据存储和管理。作为关系型数据库,它将数据存储在表格中,表格之间通过主键和外键进行关联。MySQL支持多种数据类型,例如整型、浮点型、字符型、日期时间型等。通过SQL语句,用户可以创建、查询、更新和删除数据库中的记录。 7. 下载使用: 资源标题中提到“欢迎下载使用”,意味着用户可以免费获取这个MySQL版本。用户可以通过官方网站或其他提供该软件的站点进行下载。下载安装后,用户需要配置数据库环境,然后才能进行数据库设计、开发和管理等工作。 综上所述,该资源为64位版本的MySQL 5.5.28,专为Windows系统设计,用户可以免费下载使用。它是一个功能强大的数据库管理系统,适用于数据存储和管理,尤其适合处理大量数据的场合。用户下载安装该资源后,可以开始使用MySQL提供的丰富功能,包括创建数据库、设计表结构、进行数据查询和维护等操作。