#include <stdio.h> #include <stdlib.h> typedef struct Node { char data; struct Node* lchild, * rchild; } Node; Node* createNode(char data) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->lchild = NULL; newNode->rchild = NULL; return newNode; } void inorder(Node* temp) { //中序遍历 if (temp == NULL) return; inorder(temp->lchild); printf("%c ", temp->data); inorder(temp->rchild); } char* toSequential(Node* temp, int index, int maxsize) { int i; // 动态分配数组内存,初始化为空格 char* seqArray = (char*)malloc((maxsize + 1) * sizeof(char)); for ( i = 0; i <= maxsize; i++) seqArray[i] = ' '; // 若节点为空,则返回空数组 if (temp == NULL) return seqArray; // 判断序号是否超出最大范围 if (index > maxsize) { printf("序号超出范围错误!"); exit(0); } // 将节点数据存入数组中(根节点序号为1) seqArray[index] = temp->data; // 分别对左子树和右子树进行遍历,并将结果合并到seqArray中 char* left_seq = toSequential(temp->lchild, 2 * index, maxsize); char* right_seq = toSequential(temp->rchild, 2 * index + 1, maxsize); for (i = 0; i <= maxsize; i++) { if (left_seq[i] != ' ') seqArray[i] = left_seq[i]; if (right_seq[i] != ' ') seqArray[i] = right_seq[i]; } // 释放动态分配的内存 free(left_seq); free(right_seq); return seqArray; } Node* inputNode() { char data; printf("请输入节点数据(输入'0'表示该节点为空):"); scanf(" %c", &data); // 空格用于跳过前面的换行符 if (data == '0') return NULL; Node* node = createNode(data); printf("输入节点%c的左子节点:\n", data); node->lchild = inputNode(); printf("输入节点%c的右子节点:\n", data); node->rchild = inputNode(); return node; } int main() { int maxsize,i; printf("请输入最大数组大小:"); scanf("%d", &maxsize); Node* root = inputNode(); printf("中序遍历结果: "); inorder(root); printf("\n"); char* seqArray = toSequential(root, 1, maxsize); int maxSub = 0; for ( i = maxsize; i > 0; i--) { if (seqArray[i] != ' ' && seqArray[i] != 0) { maxSub = i; break; } } printf("顺序存储结果: "); for ( i = 1; i <= maxSub; i++) printf("'%c' ", seqArray[i]); printf("\n"); printf("maxSub = %d\n", maxSub); free(seqArray); return 0; }

时间: 2024-02-07 19:02:39 浏览: 32
这段代码实现了二叉树的顺序存储,用户可以通过输入节点数据和子节点来创建一棵二叉树,并可以将其中序遍历结果和顺序存储结果输出。其中,函数toSequential实现了将二叉树转换为顺序存储的数组,并返回该数组的地址。具体实现方式是先动态分配一个大小为maxsize+1的char类型数组,表示二叉树的最大容量,然后根据二叉树节点的序号将节点数据存入数组中,如果节点为空,则将对应位置赋为空格。接着递归地遍历左子树和右子树,将得到的结果合并到seqArray中,最后释放动态分配的内存并返回seqArray的地址。
相关问题

#include<stdio.h> #include<stdlib.h> #include<string.h> typedef int DataType; void print(BiTree tree); BiTree CreatBiTree(); typedef struct Node{ DataType data; struct Node *LChild; struct Node *RChild; }BiTNode,* BiTree; void print(BiTree tree) { if(tree){ printf(tree->LChild); printf("%d",tree->data); printf(tree->RChild); } } BiTree CreatBiTree() { char ch; if(ch=='#') return NULL; else{ BiTree Node=((Node *)malloc(Node)); Node->LChild=CreatBiTree(); Node->data=ch; Node->RChild=CreatBiTree(); } } int main() { BiTree tree=NULL; tree=CreatBiTree(); print(tree); return 0; }找错误

这段代码中存在以下几个错误: 1. 缺少头文件定义,应该添加头文件:`#include "stdlib.h"`和`#include "string.h"`。 2. `BiTree`的定义应该在函数之前。 3. `CreatBiTree`函数中缺少输入,应该在函数内部添加一个读取输入字符的语句,例如:`scanf("%c",&ch);`。 4. 在`CreatBiTree`函数中,分配内存的语句应该是`Node=((BiTree)malloc(sizeof(BiTNode)));`,而不是`Node=((Node *)malloc(Node));`。 5. `print`函数中应该打印`tree->LChild`和`tree->RChild`的数据,而不是直接打印指针地址。应该改成:`print(tree->LChild); printf("%d",tree->data); print(tree->RChild);`。 下面是修改后的代码: ``` #include<stdio.h> #include<stdlib.h> #include<string.h> typedef int DataType; typedef struct Node{ DataType data; struct Node *LChild; struct Node *RChild; } BiTNode,* BiTree; BiTree CreatBiTree(); void print(BiTree tree); void print(BiTree tree) { if(tree){ print(tree->LChild); printf("%d",tree->data); print(tree->RChild); } } BiTree CreatBiTree() { char ch; scanf("%c",&ch); if(ch=='#') return NULL; else{ BiTree Node=((BiTree)malloc(sizeof(BiTNode))); Node->LChild=CreatBiTree(); Node->data=ch; Node->RChild=CreatBiTree(); return Node; } } int main() { BiTree tree=NULL; tree=CreatBiTree(); print(tree); return 0; } ```

#include<stdio.h> #include<stdlib.h> typedef struct BiTNode{ char data; struct BiTNode *lchild; struct BiTNode *rchild; }BiTNode,*Bintree; void CreateBinaryTree(Bintree *T){ char ch; scanf("%c",&ch); if(ch=='#') *T==NULL; else{ *T = (Bintree)malloc(sizeof(BiTNode)); (*T)->data = ch; CreateBinaryTree(&(*T)->lchild); CreateBinaryTree(&(*T)->rchild); } } void midOrder(Bintree T){ if(T){ midOrder(T->lchild); printf("%c",T->data); midOrder(T->rchild); } } int main() { Bintree T; CreateBinaryTree(&T); midOrder(T); return 0; }修改这段代码

代码中存在一个明显的错误,即第11行应该是赋值操作而不是等于操作。此外,函数名`midOrder`应该改为`inOrder`,以符合中序遍历的命名规范。修改后的代码如下: ```c #include <stdio.h> #include <stdlib.h> typedef struct BiTNode{ char data; struct BiTNode *lchild; struct BiTNode *rchild; } BiTNode, *Bintree; void CreateBinaryTree(Bintree *T){ char ch; scanf("%c", &ch); if (ch == '#') *T = NULL; else{ *T = (Bintree)malloc(sizeof(BiTNode)); (*T)->data = ch; CreateBinaryTree(&((*T)->lchild)); CreateBinaryTree(&((*T)->rchild)); } } void inOrder(Bintree T){ if (T){ inOrder(T->lchild); printf("%c", T->data); inOrder(T->rchild); } } int main(){ Bintree T; CreateBinaryTree(&T); inOrder(T); return 0; } ```

相关推荐

最新推荐

recommend-type

VB学生档案管理系统设计与实现.rar

计算机专业毕业设计VB精品论文资源
recommend-type

debugpy-1.6.3-cp37-cp37m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。