Confusion_matrix<-table(result$type,result$a_type) Confusion_matrix (Confusion_matrix[1,1]+Confusion_matrix[2,2]) / sum(Confusion_matrix)是什么意思
时间: 2024-02-09 08:07:05 浏览: 137
confusion_matrix:包含带有函数的 cf_matrix.py 文件,用于对混淆矩阵进行漂亮的可视化
这段代码是在计算分类模型的准确率(accuracy),其中`result$type`是模型预测的分类结果,`result$a_type`是实际的分类结果。`table(result$type,result$a_type)`返回了一个混淆矩阵(confusion matrix),它展示了模型分类的结果与实际分类结果之间的交叉情况。
`Confusion_matrix[1,1]`表示模型预测为第一类且实际也为第一类的数量,`Confusion_matrix[2,2]`表示模型预测为第二类且实际也为第二类的数量。`(Confusion_matrix[1,1]+Confusion_matrix[2,2]) / sum(Confusion_matrix)`计算了模型的准确率,即模型正确预测的样本数与总样本数的比值。其中`sum(Confusion_matrix)`计算了总样本数,即混淆矩阵中所有元素的和。
阅读全文