yolov8s网络模型结构
时间: 2024-06-14 10:02:54 浏览: 189
yolov8s模型进行剪枝源码
5星 · 资源好评率100%
YOLOv8s(You Only Look Once Version 8 Speed)是YOLO(You Only Look Once)系列的最新版本,这是一种实时物体检测算法。它的网络结构主要包括以下几个关键部分:
1. **输入处理**:YOLOv8s接受图像作为输入,并可能进行预处理,如缩放、归一化等。
2. **特征提取层**:使用深度学习网络的基础部分,如 Darknet53 或 CSPDarknet53,这些网络结构是YOLOv3的改进版,逐步提取图像的高层次特征。
3. **neck结构**:YOLOv8s可能包含SPP(空间金字塔池化)或Panoptic FPN(全景分割卷积神经网络)这样的结构,用于融合不同尺度的特征信息。
4. **特征金字塔**:多个尺度的特征图一起处理,这有助于检测不同大小的目标。
5. **预测头**:包括多个并行的检测头,每个检测头负责不同大小的目标区域。这些头包含卷积层和全连接层,用于计算每个网格位置上的目标类别和边界框。
6. **anchor boxes**:YOLOv8s使用预先定义好的Anchor boxes(锚框),这些是用于匹配不同尺寸目标的候选框。
7. **输出层**:根据每个检测头的输出,计算每个Anchor box的置信度分数、类别概率以及边界框坐标。
8. **非极大抑制(NMS)**:为了去除重叠的预测结果,YOLOv8s通常在最后一层应用NMS来筛选出最有可能的目标。
阅读全文