基于深度学习的文本生成模型研究代码
时间: 2024-06-19 22:04:17 浏览: 199
基于深度学习的文本相似度计算模型和代码
5星 · 资源好评率100%
基于深度学习的文本生成模型在自然语言处理领域有广泛应用,其中比较常见的模型有循环神经网络 (RNN)、长短时记忆网络 (LSTM)、生成对抗网络 (GAN) 和变分自编码器 (VAE) 等。这些模型需要的代码实现和训练过程略有不同,但大多数框架都提供了相应的工具和API。
以下是一个简单的文本生成模型代码示例,使用LSTM实现:
```python
import tensorflow as tf
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import RMSprop
import numpy as np
# 载入数据集
path = tf.keras.utils.get_file('nietzsche.txt', origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')
text = open(path, 'rb').read().decode(encoding='utf-8')
text = text.lower()
# 构建字符索引映射表
chars = sorted(list(set(text)))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# 预处理数据
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i: i + maxlen])
next_chars.append(text[i + maxlen])
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# 定义LSTM模型
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(chars))))
model.add(Dense(len(chars), activation='softmax'))
optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
# 训练模型
for epoch in range(1, 60):
model.fit(x, y, batch_size=128, epochs=1)
# 随机生成文本
start_index = np.random.randint(0, len(text) - maxlen - 1)
generated_text = text[start_index: start_index + maxlen]
for temperature in [0.2, 0.5, 1.0, 1.2]:
print('------temperature:', temperature)
sys.stdout.write(generated_text)
for i in range(400):
sampled = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(generated_text):
sampled[0, t, char_indices[char]] = 1.
preds = model.predict(sampled, verbose=0)
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
next_index = np.argmax(probas)
next_char = indices_char[next_index]
generated_text += next_char
generated_text = generated_text[1:]
```
阅读全文