import scipy.io as scio import numpy as np from sklearn.decomposition import PCA from sklearn import svm import matplotlib.pyplot as plt test_data = scio.loadmat('D:\\python-text\\AllData.mat') train_data = scio.loadmat('D:\\python-text\\label.mat') data2 = np.concatenate((test_data['B021FFT0'], test_data['IR007FFT0']), axis=0) data3 = train_data['label'].reshape(-1) # print(data3) pca = PCA(n_components=2) # pca.fit(data2) data4 = pca.fit_transform(data2) # 随机打乱数据集 indices = np.arange(data4.shape[0]) np.random.shuffle(indices) data4 = data4[indices] data3 = data3[indices] # 选择前200个数据作为训练集 data4 = data4[:200] data3 = data3[:200] # 创建一个高斯内核的支持向量机模型 clf = svm.SVC(kernel='rbf', C=1000) clf.fit(data4, data3) plt.scatter(data4[:, 0], data4[:, 1], c=data3, s=30, cmap=plt.cm.Paired) axis = plt.gca() xlim = axis.get_xlim() ylim = axis.get_ylim() xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) X, Y = np.meshgrid(xx, yy) xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none') plt.show()计算训练集和测试集的分类准确率
时间: 2024-01-14 22:02:39 浏览: 83
在这段代码中,没有给出测试集,只有训练集。因此无法计算测试集的分类准确率。如果有测试集数据,可以使用以下代码计算分类准确率:
```
# 假设测试集数据为 test_data 和 test_labels
test_data = ... # 测试集数据
test_labels = ... # 测试集标签
# 对测试集数据进行 PCA 变换
test_data_pca = pca.transform(test_data)
# 使用训练好的 SVM 模型对测试集数据进行分类
predicted_labels = clf.predict(test_data_pca)
# 计算分类准确率
accuracy = np.mean(predicted_labels == test_labels)
print('分类准确率:', accuracy)
```
其中,predicted_labels 是 SVM 模型对测试集数据进行分类预测得到的标签,test_labels 是测试集数据的真实标签。分类准确率可以通过计算预测标签和真实标签相同的数据点占总数据点的比例得到。
相关问题
优化这段代码import scipy.io.wavfile as wavfile import numpy as np import matplotlib.pyplot as plt # 读取WAV文件 sample_rate, data = wavfile.read('test.wav') # 将音频数据转换为一维数组或二维数组 if data.ndim == 1: # 单声道音频数据转换为一维数组 audio_data = data else: # 双声道音频数据转换为二维数组 audio_data = data.sum(axis=1) / 2 # 显示音频波形图 plt.plot(audio_data) plt.show()
这段代码已经比较简洁,但是还有一些可以优化的地方:
1. 引入模块后,应该先检查是否导入成功,避免在后续代码中出现错误。可以使用 `try-except` 语句来捕获导入错误。
2. 读取 WAV 文件时,应该指定文件的编码格式,否则在某些系统中可能会出现错误。
3. 绘制音频波形图时,可以添加横轴和纵轴的标签,提高可读性。
4. 可以将绘制波形图的代码封装成函数,方便复用。
下面是优化后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
try:
import scipy.io.wavfile as wavfile
except ImportError:
print('scipy module not found')
def read_wav_file(file_path):
try:
# 读取 WAV 文件,指定编码为 'utf-8'
sample_rate, data = wavfile.read(file_path, 'utf-8')
except FileNotFoundError:
print('File not found:', file_path)
return None
except ValueError:
print('Unsupported WAV file:', file_path)
return None
# 将音频数据转换为一维数组或二维数组
if data.ndim == 1:
# 单声道音频数据转换为一维数组
audio_data = data
else:
# 双声道音频数据转换为二维数组
audio_data = data.sum(axis=1) / 2
return sample_rate, audio_data
def plot_waveform(audio_data, sample_rate):
# 显示音频波形图
time_axis = np.arange(0, len(audio_data)) / sample_rate
plt.plot(time_axis, audio_data)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.show()
# 读取 WAV 文件并绘制波形图
file_path = 'test.wav'
wav_data = read_wav_file(file_path)
if wav_data is not None:
sample_rate, audio_data = wav_data
plot_waveform(audio_data, sample_rate)
```
在上述代码中,`read_wav_file()` 函数用于读取 WAV 文件,并返回采样率和音频数据。`plot_waveform()` 函数用于绘制音频波形图,其中 `time_axis` 变量用于表示时间轴的范围。最后,我们读取 WAV 文件并绘制波形图,如果读取失败则返回 `None`。
import numpy as np import matplotlib.pyplot as plt from scipy.io import loadmat
这段代码导入了一些常用的Python库和加载.mat文件的函数loadmat。具体解释如下:
- numpy:Python数学计算库,提供了高效的数组运算和大量的数学函数。
- matplotlib.pyplot:Python绘图库,提供了广泛的绘图功能和自定义选项。
- scipy.io.loadmat:Scipy科学计算库的一个函数,用于读取MATLAB格式的数据文件。
阅读全文