解释下这段代码: while len(idxs) > 0: last = len(idxs) - 1 i = idxs[last] pick.append(i) # keep top k if keep_top_k != -1: if len(pick) >= keep_top_k: break overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]]) overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]]) overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]]) overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]]) overlap_w = np.maximum(0, overlap_xmax - overlap_xmin) overlap_h = np.maximum(0, overlap_ymax - overlap_ymin) overlap_area = overlap_w * overlap_h overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area) need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > iou_thresh)[0])) idxs = np.delete(idxs, need_to_be_deleted_idx) # if the number of final bboxes is less than keep_top_k, we need to pad it. # TODO return conf_keep_idx[pick]
时间: 2024-03-11 19:43:53 浏览: 88
这是一个非极大值抑制(Non-Maximum Suppression,简称NMS)的代码实现,用于去除重叠的边界框。输入为一组边界框(bounding boxes)及其对应的置信度(confidence scores),输出为经过NMS后剩余的边界框的索引。
具体实现过程如下:
1. 首先将所有边界框按照置信度从高到低排序。
2. 取出置信度最高的边界框,并将其加入最终输出列表中。
3. 计算当前边界框与剩余边界框的重叠部分,如果重叠部分的面积占总面积的比例大于一定阈值(iou_thresh),则将该边界框删除。
4. 重复第2步和第3步,直到所有的边界框都被处理完毕。
5. 如果最终输出的边界框数量少于指定的保留数量(keep_top_k),则需要进行填充,这里还未实现。
最终返回的是经过NMS后剩余的边界框的索引。
阅读全文