log_p = log_p+d.log_prob(data_x).detach().numpy()怎么理解
时间: 2023-05-28 21:01:44 浏览: 185
这段代码的作用是将概率分布 $d$ 在数据 $data_x$ 上的对数概率值计算出来,并转化为一个 NumPy 数组形式。
具体而言,假设 $d$ 是一个概率分布对象,其中的 `log_prob()` 方法可以计算任意一个数据样本 $x$ 的对数概率值 $log_p(x)$。该方法的输出是一个 PyTorch 张量(`tensor`),因为概率分布的计算通常是基于 PyTorch 的张量计算实现的。
为了将这个张量转化为 NumPy 数组,需要使用 `detach()` 方法切断梯度计算(因为 PyTorch 张量是需要梯度计算的,而 NumPy 数组不需要),并使用 `numpy()` 方法将其转化为 NumPy 数组。
最后,将计算出来的对数概率值赋值给变量 `log_p`,可以方便地对其进行后续可视化、统计等操作。
相关问题
给出基于pytorch强化学习SAC算法对Swimmer-v3训练输出的policy.pth、actor.pth和critic.pth模型的代码,写出如何转化成tensorflow lite,并部署到esp32中
这是一个比较复杂的问题,需要分为几个步骤来完成。
首先,我们需要使用PyTorch实现SAC算法来训练Swimmer-v3环境。这个过程可以参考OpenAI Gym官方文档,具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
import numpy as np
import random
# 定义策略网络
class Policy(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(Policy, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义Q网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim+action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义重要性采样函数
def logprob(mu, log_std, action):
var = torch.exp(2*log_std)
logp = -0.5 * torch.sum(torch.pow(action-mu, 2)/var + 2*log_std + np.log(2*np.pi), dim=1)
return logp
# 定义SAC算法
class SAC:
def __init__(self, env, state_dim, action_dim, hidden_dim=256, lr=0.001, gamma=0.99, tau=0.01, alpha=0.2, buffer_size=1000000, batch_size=256, target_entropy=None):
self.env = env
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_dim = hidden_dim
self.lr = lr
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.buffer_size = buffer_size
self.batch_size = batch_size
self.target_entropy = -action_dim if target_entropy is None else target_entropy
self.policy = Policy(state_dim, action_dim, hidden_dim).to(device)
self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=lr)
self.q1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q1_optimizer = optim.Adam(self.q1.parameters(), lr=lr)
self.q2_optimizer = optim.Adam(self.q2.parameters(), lr=lr)
self.value = QNet(state_dim, action_dim, hidden_dim).to(device)
self.value_optimizer = optim.Adam(self.value.parameters(), lr=lr)
self.memory = []
self.steps = 0
self.episodes = 0
def select_action(self, state, test=False):
state = torch.FloatTensor(state).to(device)
with torch.no_grad():
mu = self.policy(state)
log_std = torch.zeros_like(mu)
action = mu + torch.exp(log_std) * torch.randn_like(mu)
action = action.cpu().numpy()
return action if test else np.clip(action, self.env.action_space.low, self.env.action_space.high)
def update(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.sample()
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
next_state = torch.FloatTensor(next_state).to(device)
done = torch.FloatTensor(done).unsqueeze(-1).to(device)
with torch.no_grad():
next_action, next_log_prob = self.policy.sample(next_state)
next_q1 = self.q1(next_state, next_action)
next_q2 = self.q2(next_state, next_action)
next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_prob
target_q = reward + (1-done) * self.gamma * next_q
q1 = self.q1(state, action)
q2 = self.q2(state, action)
value = self.value(state)
q1_loss = nn.MSELoss()(q1, target_q.detach())
q2_loss = nn.MSELoss()(q2, target_q.detach())
value_loss = nn.MSELoss()(value, torch.min(q1, q2).detach())
self.q1_optimizer.zero_grad()
q1_loss.backward()
self.q1_optimizer.step()
self.q2_optimizer.zero_grad()
q2_loss.backward()
self.q2_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
with torch.no_grad():
new_action, new_log_prob = self.policy.sample(state)
q1_new = self.q1(state, new_action)
q2_new = self.q2(state, new_action)
q_new = torch.min(q1_new, q2_new) - self.alpha * new_log_prob
policy_loss = (self.alpha * new_log_prob - q_new).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
self.alpha = max(0.01, self.alpha - 1e-4)
for target_param, param in zip(self.value.parameters(), self.q1.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.value.parameters(), self.q2.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
self.steps += self.batch_size
if done.any():
self.episodes += done.sum().item()
def sample(self):
indices = np.random.randint(0, len(self.memory), size=self.batch_size)
state, action, reward, next_state, done = zip(*[self.memory[idx] for idx in indices])
return state, action, reward, next_state, done
def run(self, episodes=1000, render=False):
for episode in range(episodes):
state = self.env.reset()
episode_reward = 0
done = False
while not done:
if render:
self.env.render()
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
self.memory.append((state, action, reward, next_state, done))
self.update()
state = next_state
episode_reward += reward
print(f"Episode {episode}, Reward {episode_reward}")
self.save_model()
def save_model(self, path="./"):
torch.save(self.policy.state_dict(), path + "policy.pth")
torch.save(self.q1.state_dict(), path + "q1.pth")
torch.save(self.q2.state_dict(), path + "q2.pth")
def load_model(self, path="./"):
self.policy.load_state_dict(torch.load(path + "policy.pth"))
self.q1.load_state_dict(torch.load(path + "q1.pth"))
self.q2.load_state_dict(torch.load(path + "q2.pth"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make("Swimmer-v3")
sac = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
sac.run()
```
接下来,我们需要将训练好的模型导出为TensorFlow Lite模型。为此,我们需要使用ONNX将PyTorch模型转换为ONNX格式,然后使用TensorFlow Lite Converter将ONNX模型转换为TensorFlow Lite模型。具体实现代码如下:
```python
import onnx
from onnx_tf.backend import prepare
import tensorflow as tf
from tensorflow import lite
# 将PyTorch模型转换为ONNX格式
model = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
model.load_model()
dummy_input = torch.randn(1, env.observation_space.shape[0])
torch.onnx.export(model.policy, dummy_input, "policy.onnx", export_params=True)
# 将ONNX模型转换为TensorFlow Lite模型
onnx_model = onnx.load("policy.onnx")
tf_model = prepare(onnx_model)
tflite_model = lite.TFLiteConverter.from_session(tf_model.session).convert()
# 保存TensorFlow Lite模型
with open("policy.tflite", "wb") as f:
f.write(tflite_model)
```
最后,我们需要将TensorFlow Lite模型部署到ESP32中。首先,需要安装ESP-IDF开发环境。然后,我们可以使用ESP32的TensorFlow Lite for Microcontrollers库来加载和运行模型。具体实现代码如下:
```c
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// 定义模型文件名
#define MODEL_FILENAME "/path/to/policy.tflite"
// 定义输入输出张量的数量和形状
#define INPUT_TENSOR_NUM 1
#define INPUT_TENSOR_HEIGHT 1
#define INPUT_TENSOR_WIDTH 8
#define OUTPUT_TENSOR_NUM 1
#define OUTPUT_TENSOR_HEIGHT 1
#define OUTPUT_TENSOR_WIDTH 2
int main()
{
// 加载模型
const tflite::Model* model = tflite::GetModel(MODEL_FILENAME);
if (model == nullptr) {
return -1;
}
// 创建解释器和张量分配器
static tflite::MicroInterpreter interpreter(model, tflite::AllOpsResolver(), nullptr, nullptr);
interpreter.AllocateTensors();
// 获取输入输出张量
TfLiteTensor* input = interpreter.input(0);
input->dims->data[0] = INPUT_TENSOR_HEIGHT;
input->dims->data[1] = INPUT_TENSOR_WIDTH;
input->type = kTfLiteFloat32;
TfLiteTensor* output = interpreter.output(0);
output->dims->data[0] = OUTPUT_TENSOR_HEIGHT;
output->dims->data[1] = OUTPUT_TENSOR_WIDTH;
output->type = kTfLiteFloat32;
// 运行模型
float input_data[INPUT_TENSOR_HEIGHT][INPUT_TENSOR_WIDTH] = {0.0};
float output_data[OUTPUT_TENSOR_HEIGHT][OUTPUT_TENSOR_WIDTH] = {0.0};
input->data.f = reinterpret_cast<float*>(input_data);
output->data.f = reinterpret_cast<float*>(output_data);
interpreter.Invoke();
// 打印输出结果
printf("Output: %f %f\n", output_data[0][0], output_data[0][1]);
return 0;
}
```
需要注意的是,ESP32的TensorFlow Lite for Microcontrollers库只支持一小部分的TensorFlow Lite操作,因此在将模型转换为TensorFlow Lite格式时需要使用支持的操作。如果模型中包含不支持的操作,可以尝试使用TensorFlow Lite for Microcontrollers的自定义操作接口来实现。
tianshou基于pytorch的sac连续空间的算法,并输出每个网络训练模型pth文件的代码,并利用writer.add输出网络的可视图
以下是基于PyTorch的SAC算法的代码,包括输出每个网络训练模型pth文件和使用writer.add输出网络可视图:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import gym
import numpy as np
# 定义神经网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义SAC算法
class SAC:
def __init__(self, state_dim, action_dim, hidden_dim, gamma, tau, alpha, device):
self.q_net1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q_net2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNet(state_dim, action_dim, hidden_dim).to(device)
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.device = device
self.writer = SummaryWriter()
def select_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action, _, _ = self.policy_net.sample(state)
return action.cpu().detach().numpy()[0]
def update(self, replay_buffer, batch_size):
# 从回放缓存中采样随机批次
state, action, next_state, reward, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
# 更新Q网络
target_q_value = reward + (1 - done) * self.gamma * torch.min(
self.target_q_net1(next_state, self.policy_net(next_state))[0],
self.target_q_net2(next_state, self.policy_net(next_state))[0]
)
q_value_loss1 = nn.functional.mse_loss(self.q_net1(state, action), target_q_value.detach())
q_value_loss2 = nn.functional.mse_loss(self.q_net2(state, action), target_q_value.detach())
self.writer.add_scalar('Loss/Q1', q_value_loss1, global_step=self.step)
self.writer.add_scalar('Loss/Q2', q_value_loss2, global_step=self.step)
self.q_optim1.zero_grad()
q_value_loss1.backward()
self.q_optim1.step()
self.q_optim2.zero_grad()
q_value_loss2.backward()
self.q_optim2.step()
# 更新策略网络
new_action, log_prob, _ = self.policy_net.sample(state)
q1_new = self.q_net1(state, new_action)
q2_new = self.q_net2(state, new_action)
q_new = torch.min(q1_new, q2_new)
policy_loss = (self.alpha * log_prob - q_new).mean()
self.writer.add_scalar('Loss/Policy', policy_loss, global_step=self.step)
self.policy_optim.zero_grad()
policy_loss.backward()
self.policy_optim.step()
# 更新目标Q网络
self.soft_update(self.target_q_net1, self.q_net1)
self.soft_update(self.target_q_net2, self.q_net2)
def soft_update(self, target_net, eval_net):
for target_param, param in zip(target_net.parameters(), eval_net.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def train(self, env, replay_buffer, batch_size, episodes, steps_per_episode):
self.q_optim1 = optim.Adam(self.q_net1.parameters(), lr=3e-4)
self.q_optim2 = optim.Adam(self.q_net2.parameters(), lr=3e-4)
self.policy_optim = optim.Adam(self.policy_net.parameters(), lr=3e-4)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
for episode in range(episodes):
state = env.reset()
episode_reward = 0
for step in range(steps_per_episode):
self.step = episode * steps_per_episode + step
action = self.select_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, next_state, reward, done)
state = next_state
episode_reward += reward
if len(replay_buffer) > batch_size:
self.update(replay_buffer, batch_size)
if done:
break
self.writer.add_scalar('Reward', episode_reward, global_step=episode)
print(f'Episode {episode} reward: {episode_reward}')
# 保存模型
torch.save(self.q_net1.state_dict(), 'q_net1.pth')
torch.save(self.q_net2.state_dict(), 'q_net2.pth')
torch.save(self.policy_net.state_dict(), 'policy_net.pth')
# 输出网络可视图
state = env.reset()
self.writer.add_graph(self.q_net1, (torch.FloatTensor(state).to(self.device),
torch.FloatTensor(env.action_space.sample()).to(self.device)))
self.writer.add_graph(self.q_net2, (torch.FloatTensor(state).to(self.device),
torch.FloatTensor(env.action_space.sample()).to(self.device)))
self.writer.add_graph(self.policy_net, torch.FloatTensor(state).to(self.device))
```
调用SAC类的train方法,即可开始训练并输出每个网络训练模型pth文件和网络可视图:
```python
env = gym.make('Pendulum-v0')
replay_buffer = ReplayBuffer(1000000)
sac = SAC(state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0],
hidden_dim=256,
gamma=0.99,
tau=0.005,
alpha=0.2,
device='cuda')
sac.train(env, replay_buffer, batch_size=256, episodes=100, steps_per_episode=200)
```
阅读全文