用pytorch写一个域适应迁移学习代码,损失函数为mmd距离域判别损失和交叉熵损失
时间: 2023-04-12 10:01:07 浏览: 589
可以使用以下代码实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from sklearn.metrics import accuracy_score
from torch.autograd import Variable
class DomainAdaptationModel(nn.Module):
def __init__(self, num_classes=2):
super(DomainAdaptationModel, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 1024, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(1024, 1024),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(1024, num_classes),
)
def forward(self, x):
x = self.feature_extractor(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def mmd_loss(source_features, target_features):
source_mean = torch.mean(source_features, dim=0)
target_mean = torch.mean(target_features, dim=0)
mmd = torch.mean(torch.pow(source_mean - target_mean, 2))
return mmd
def domain_discriminator_loss(source_features, target_features):
source_labels = torch.zeros(source_features.size(0))
target_labels = torch.ones(target_features.size(0))
labels = torch.cat((source_labels, target_labels), dim=0)
features = torch.cat((source_features, target_features), dim=0)
criterion = nn.BCEWithLogitsLoss()
loss = criterion(features, labels)
return loss
def train(model, source_loader, target_loader, optimizer, num_epochs=10):
model.train()
for epoch in range(num_epochs):
for i, (source_data, target_data) in enumerate(zip(source_loader, target_loader)):
source_inputs, source_labels = source_data
target_inputs, _ = target_data
inputs = torch.cat((source_inputs, target_inputs), dim=0)
inputs = Variable(inputs.cuda())
source_labels = Variable(source_labels.cuda())
optimizer.zero_grad()
source_features = model(inputs[:source_inputs.size(0)])
target_features = model(inputs[source_inputs.size(0):])
mmd_loss_value = mmd_loss(source_features, target_features)
domain_discriminator_loss_value = domain_discriminator_loss(source_features, target_features)
classification_loss = nn.CrossEntropyLoss()(model(inputs[:source_inputs.size(0)]), source_labels)
loss = classification_loss + mmd_loss_value + domain_discriminator_loss_value
loss.backward()
optimizer.step()
if i % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(source_loader), loss.item()))
source_loader = torch.utils.data.DataLoader(source_dataset, batch_size=32, shuffle=True)
target_loader = torch.utils.data.DataLoader(target_dataset, batch_size=32, shuffle=True)
model = DomainAdaptationModel(num_classes=10)
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, source_loader, target_loader, optimizer, num_epochs=10)
```
阅读全文