基于python的模拟退火算法实现进化算法求解TSP(旅行商问题)
时间: 2024-03-19 17:41:14 浏览: 74
实现进化算法求解TSP问题的方法之一是使用模拟退火算法。以下是一个基于Python的简单实现:
首先,我们需要定义一个计算路径长度的函数,它将接受一个路径列表并返回路径的长度。
```python
import math
def path_length(path, distances):
length = 0
for i in range(len(path)-1):
length += distances[path[i]][path[i+1]]
length += distances[path[-1]][path[0]]
return length
```
接下来,我们需要定义一个模拟退火算法的函数。在这个函数中,我们将使用随机生成的初始路径,然后通过随机交换路径中的两个城市来生成新的路径。我们还需要定义一个降温函数,该函数将根据当前温度和降温速率计算新的温度,并在退火过程中使用该温度。
```python
import random
def simulated_annealing(distances, initial_temperature, cooling_rate):
num_cities = len(distances)
current_path = list(range(num_cities))
random.shuffle(current_path)
current_length = path_length(current_path, distances)
temperature = initial_temperature
while temperature > 1:
# Generate a new path by randomly swapping two cities
new_path = list(current_path)
i, j = random.sample(range(num_cities), 2)
new_path[i], new_path[j] = new_path[j], new_path[i]
new_length = path_length(new_path, distances)
# Accept the new path if it improves the objective function
if new_length < current_length:
current_path = new_path
current_length = new_length
# If the new path is worse, accept it with a certain probability
else:
delta = new_length - current_length
probability = math.exp(-delta / temperature)
if random.random() < probability:
current_path = new_path
current_length = new_length
# Reduce the temperature
temperature *= cooling_rate
return current_path, current_length
```
最后,我们需要提供一个距离矩阵作为输入,并调用模拟退火算法函数来解决TSP问题。
```python
distances = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
]
initial_temperature = 1000
cooling_rate = 0.99
best_path, best_length = simulated_annealing(distances, initial_temperature, cooling_rate)
print("Best path:", best_path)
print("Best length:", best_length)
```
这个简单的实现可能无法处理大规模的TSP问题,但它可以作为一个起点来了解模拟退火算法的基本原理和实现方式。
阅读全文