Python实现进化算法求解TSP(旅行商问题)蚁群算法
时间: 2023-11-29 18:30:07 浏览: 177
python基于蚁群算法求旅行商问题(TSP)
蚁群算法是一种基于蚂蚁寻找食物的行为模式的启发式算法,可以用来解决TSP问题。在Python中实现蚁群算法求解TSP问题的步骤如下:
1. 定义TSP问题的数据结构,包括城市坐标、城市之间距离矩阵等。
2. 初始化蚂蚁群,包括蚂蚁数量、信息素矩阵、城市访问状态等。
3. 根据信息素和距离计算城市之间的转移概率,选择下一个要访问的城市。
4. 更新蚂蚁的路径、信息素矩阵等。
5. 重复步骤3和4,直到所有蚂蚁都完成了一次遍历。
6. 更新全局最优解。
7. 根据全局最优解更新信息素矩阵。
8. 重复步骤3到7,直到满足停止条件。
下面是一个简单的Python代码实现,仅供参考:
```python
import random
class Ant:
def __init__(self, city_num):
self.city_num = city_num
self.visited = [False] * city_num
self.path = [0] * city_num
self.path[0] = random.randint(0, city_num - 1)
self.visited[self.path[0]] = True
self.length = 0.0
def select_next(self, distance, pheromone, alpha, beta):
last_city = self.path[self.length - 1]
prob = [0.0] * self.city_num
total_prob = 0.0
for i in range(self.city_num):
if self.visited[i]:
continue
prob[i] = pow(pheromone[last_city][i], alpha) * pow(1.0 / distance[last_city][i], beta)
total_prob += prob[i]
if total_prob == 0.0:
return random.randint(0, self.city_num - 1)
r = random.uniform(0, total_prob)
for i in range(self.city_num):
if not self.visited[i]:
r -= prob[i]
if r < 0.0:
return i
return -1
def update_path(self, city):
self.path[self.length] = city
self.visited[city] = True
self.length += 1
def calc_length(self, distance):
self.length = 0.0
for i in range(self.city_num):
self.length += distance[self.path[i - 1]][self.path[i]]
def clear(self):
self.visited = [False] * self.city_num
self.path = [0] * self.city_num
self.path[0] = random.randint(0, self.city_num - 1)
self.visited[self.path[0]] = True
self.length = 0.0
class ACO_TSP:
def __init__(self, city_num, ant_num, max_iter, rho, alpha, beta, distance):
self.city_num = city_num
self.ant_num = ant_num
self.max_iter = max_iter
self.rho = rho
self.alpha = alpha
self.beta = beta
self.distance = distance
self.pheromone = [[1.0 / (city_num * city_num) for j in range(city_num)] for i in range(city_num)]
self.ants = [Ant(city_num) for i in range(ant_num)]
self.best_ant = Ant(city_num)
self.best_ant.length = 1e9
def update_pheromone(self):
for i in range(self.city_num):
for j in range(self.city_num):
self.pheromone[i][j] *= (1.0 - self.rho)
for ant in self.ants:
for i in range(self.city_num):
self.pheromone[ant.path[i - 1]][ant.path[i]] += 1.0 / ant.length
def solve(self):
for iter in range(self.max_iter):
for ant in self.ants:
ant.clear()
for i in range(self.city_num - 1):
city = ant.select_next(self.distance, self.pheromone, self.alpha, self.beta)
ant.update_path(city)
ant.calc_length(self.distance)
if ant.length < self.best_ant.length:
self.best_ant = ant
self.update_pheromone()
return self.best_ant.path, self.best_ant.length
```
其中,`city_num`表示城市数量,`ant_num`表示蚂蚁数量,`max_iter`表示最大迭代次数,`rho`表示信息素挥发系数,`alpha`和`beta`分别表示信息素和距离的重要程度,`distance`表示城市之间的距离矩阵。`Ant`类表示一只蚂蚁,包含选择下一个要访问的城市、更新路径等方法。`ACO_TSP`类表示蚁群算法求解TSP问题的主要逻辑,包括初始化、更新信息素、求解等方法。
阅读全文