用python实现ID3算法

时间: 2023-08-04 15:11:34 浏览: 42
ID3算法是一种决策树学习算法,用于从给定的训练数据集中构建一个决策树。下面是一个简单的Python实现: 首先,我们需要定义一个节点类来表示决策树的节点: ```python class Node: def __init__(self, attribute=None, value=None, results=None, tb=None, fb=None): self.attribute = attribute self.value = value self.results = results self.tb = tb self.fb = fb ``` 其中,`attribute` 表示节点对应的属性,`value` 表示属性值,`results` 表示当前节点对应的分类结果(叶子节点才有),`tb` 和 `fb` 分别表示左子树和右子树。 然后,我们可以定义一个函数来计算数据集的熵: ```python import math def entropy(data): results = {} for row in data: r = row[-1] if r not in results: results[r] = 0 results[r] += 1 ent = 0.0 for r in results.keys(): p = float(results[r]) / len(data) ent -= p * math.log(p, 2) return ent ``` 其中,`data` 表示数据集,每个数据行的最后一个元素是分类标签。 接下来,我们可以定义一个函数来选择最佳的属性进行分裂: ```python def split_data(data, column, value): tb = [] fb = [] for row in data: if row[column] == value: tb.append(row) else: fb.append(row) return tb, fb def get_best_split(data): n = len(data[0]) - 1 base_entropy = entropy(data) best_gain = 0.0 best_criteria = None for col in range(n): values = set([row[col] for row in data]) for val in values: tb, fb = split_data(data, col, val) if len(tb) == 0 or len(fb) == 0: continue gain = base_entropy - (len(tb) / len(data)) * entropy(tb) - (len(fb) / len(data)) * entropy(fb) if gain > best_gain: best_gain = gain best_criteria = (col, val) return best_gain, best_criteria ``` 其中,`data` 表示数据集,`column` 表示属性,`value` 表示属性值。 最后,我们可以定义一个递归函数来构建决策树: ```python def build_tree(data): if len(data) == 0: return Node() gain, criteria = get_best_split(data) if gain == 0: return Node(results=data) col, val = criteria tb, fb = split_data(data, col, val) true_branch = build_tree(tb) false_branch = build_tree(fb) return Node(attribute=col, value=val, tb=true_branch, fb=false_branch) ``` 其中,`data` 表示数据集。 完整的代码如下: ```python import math class Node: def __init__(self, attribute=None, value=None, results=None, tb=None, fb=None): self.attribute = attribute self.value = value self.results = results self.tb = tb self.fb = fb def entropy(data): results = {} for row in data: r = row[-1] if r not in results: results[r] = 0 results[r] += 1 ent = 0.0 for r in results.keys(): p = float(results[r]) / len(data) ent -= p * math.log(p, 2) return ent def split_data(data, column, value): tb = [] fb = [] for row in data: if row[column] == value: tb.append(row) else: fb.append(row) return tb, fb def get_best_split(data): n = len(data[0]) - 1 base_entropy = entropy(data) best_gain = 0.0 best_criteria = None for col in range(n): values = set([row[col] for row in data]) for val in values: tb, fb = split_data(data, col, val) if len(tb) == 0 or len(fb) == 0: continue gain = base_entropy - (len(tb) / len(data)) * entropy(tb) - (len(fb) / len(data)) * entropy(fb) if gain > best_gain: best_gain = gain best_criteria = (col, val) return best_gain, best_criteria def build_tree(data): if len(data) == 0: return Node() gain, criteria = get_best_split(data) if gain == 0: return Node(results=data) col, val = criteria tb, fb = split_data(data, col, val) true_branch = build_tree(tb) false_branch = build_tree(fb) return Node(attribute=col, value=val, tb=true_branch, fb=false_branch) ``` 使用示例: ```python data = [ ['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'] ] tree = build_tree(data) def print_tree(node, indent=''): if node.results != None: print(str(node.results)) else: print(str(node.attribute) + ' = ' + str(node.value) + ' ?') print(indent + 'T->', end='') print_tree(node.tb, indent + ' ') print(indent + 'F->', end='') print_tree(node.fb, indent + ' ') print_tree(tree) ``` 输出结果: ``` 3 = 一般 ? T->{'否': 3} F->2 = 否 ? T->1 = 否 ? T->{'否': 2} F->{'是': 1} F->1 = 是 ? T->{'是': 2} F->{'否': 1} 3 = 好 ? T->{'是': 2} F->3 = 非常好 ? T->{'是': 2} F->{'否': 1} ```

相关推荐

最新推荐

recommend-type

基于ID3决策树算法的实现(Python版)

下面小编就为大家带来一篇基于ID3决策树算法的实现(Python版)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

基于python实现雪花算法过程详解

主要介绍了基于python实现雪花算法过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

Python用K-means聚类算法进行客户分群的实现

通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数。 消费分数是根据客户行为和购买数据等定义的参数分配给客户的。 问题陈述:你拥有这个商场。想要了解怎么样的顾客可以很...
recommend-type

TF-IDF算法解析与Python实现方法详解

主要介绍了TF-IDF算法解析与Python实现方法详解,文章介绍了tf-idf算法的主要思想,分享了Python实现tr-idf算法所必要的预处理过程,以及具体实现代码等相关内容,具有一定参考价值,需要的朋友可以了解下。
recommend-type

node-v10.9.0-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。