递推最小二乘算法matlab
时间: 2023-12-13 14:01:19 浏览: 121
用matlab实现最小二乘递推算法辨识系统参数.pdf
5星 · 资源好评率100%
递推最小二乘算法(RLS算法)是一种用于估计线性时不变系统的参数的算法。在Matlab中,可以通过使用“rls”函数来实现递推最小二乘算法。该函数的语法格式为:
[theta,P,e] = rls(x,d,lambda)
其中,x是输入信号的矩阵,d是期望输出信号的矩阵,lambda是遗忘因子。函数会返回估计的参数theta、协方差矩阵P和预测误差e。
在实际应用中,可以先定义输入信号x和期望输出信号d,然后调用“rls”函数进行参数估计。例如:
x = randn(100,3); % 生成100个样本的3维随机输入信号
d = x*[1;2;3] + randn(100,1); % 生成期望输出信号
[theta,P,e] = rls(x,d,0.99); % 调用rls函数进行参数估计
通过上述代码,就可以得到输入信号x和期望输出信号d的RLS估计参数theta、协方差矩阵P和预测误差e。这些参数可以帮助我们更好地理解系统的特性,并用于系统建模、预测等应用中。
总之,递推最小二乘算法是一种在Matlab中实现的用于参数估计的算法,通过调用“rls”函数,可以方便地对线性时不变系统进行建模和分析。
阅读全文